The Role of Chaperone-Mediated Autophagy in Huntingtin Degradation
نویسندگان
چکیده
Huntington Disease (HD) is caused by an abnormal expansion of polyQ tract in the protein named huntingtin (Htt). HD pathology is featured by accumulation and aggregation of mutant Htt in striatal and cortical neurons. Aberrant Htt degradation is implicated in HD pathogenesis. The aim of this study was to investigate the regulatory role of chaperone-mediated autophagy (CMA) components, heat shock protein cognate 70 (Hsc70) and lysosome-associated protein 2A (LAMP-2A) in degradation of Htt fragment 1-552aa (Htt-552). A cell model of HD was produced by overexpression of Htt-552 with adenovirus. The involvement of CMA components in degradation of Htt-552 was determined with over-expression or silencing of Hsc70 and LAMP-2A. The results confirmed previous reports that both macroautophagy and CMA were involved in degradation of Htt-552. Changing the levels of CMA-related proteins affected the accumulation of Htt-552. The lysosomal binding and luminal transport of Htt-552 was demonstrated by incubation of Htt-552 with isolated lysosomes. Expansion of the polyQ tract in Htt-552 impaired its uptake and degradation by lysosomes. Mutation of putative KFERQ motif in wild-type Htt-552 interfered with interactions between Htt-552 and Hsc70. Endogenous Hsc70 and LAMP-2A interacted with exogenously expressed Htt-552. Modulating the levels of CMA related proteins degraded endogenous full-length Htt. These studies suggest that Hsc70 and LAMP-2A through CMA play a role in the clearance of Htt and suggest a novel strategy to target the degradation of mutant Htt.
منابع مشابه
Role of chaperone-mediated autophagy in degrading Huntington's disease-associated huntingtin protein.
Mutant N-terminal huntingtin (Htt) protein resulting from Huntington's disease (HD) with expanded polyglutamine accumulates and forms aggregates in vulnerable neurons. Both ubiquitin proteasomal and autophagic pathways contribute to the degradation of mutant Htt. Here, we focus on the involvement of chaperone-mediated autophagy (CMA), a selective form of autophagy in the clearance of Htt. Selec...
متن کاملThe absence of specific yeast heat-shock proteins leads to abnormal aggregation and compromised autophagic clearance of mutant Huntingtin proteins
The functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin pro...
متن کاملUbiquilin functions in autophagy and is degraded by chaperone-mediated autophagy.
Autophagy is the process by which organelles and portions of the cytoplasm are degraded in lysosomes. Several different forms of autophagy are known that are distinguishable chiefly by the mode in which cargo is delivered to the lysosome for degradation. Ubiquilin was recently reported to regulate macroautophagy, the form of autophagy in which cytosolic cargo is packaged in a double-membrane st...
متن کاملK63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy
Chaperone-Mediated Autophagy is a selective form of autophagy. Recently, the degradation of a newly identified CMA substrate, the HIF1A transcription factor, was found to be regulated by the ubiquitin ligase STUB1. In this study we show, for the first time, that K63 ubiquitination is necessary for CMA degradation of HIF1A in vitro and in vivo. Additionally, STUB1 mediates K63 linked ubiquitinat...
متن کاملCathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor.
Protective protein/cathepsin A (PPCA) has a serine carboxypeptidase activity of unknown physiological function. We now demonstrate that this protease activity triggers the degradation of the lysosome-associated membrane protein type 2a (lamp2a), a receptor for chaperone-mediated autophagy (CMA). Degradation of lamp2a is important because its level in the lysosomal membrane is a rate-limiting st...
متن کامل