Anomalous ion heating from ambipolar-constrained magnetic fluctuation-induced transport

نویسندگان

  • R. Gatto
  • P. W. Terry
چکیده

A kinetic theory for the anomalous heating of ions from energy stored in magnetic turbulence is presented. Imposing self-consistency through the constitutive relations between particle distributions and fields, a turbulent Kirchhoff’s Law is derived that expresses a direct connection between rates of ion heating and electron thermal transport. This connection arises from the kinematics of electron motion along turbulent fields, which results in granular structures in the electron distribution. The drag exerted on these structures through emission into collective modes mediates an effective ambipolar constraint on transport. Resonant damping of the collective modes by ions produces the heating. In collisionless plasmas the rate of ion damping controls the rate of emission, and hence the ambipolar-constrained electron heat flux. The heating rate is calculated for both a resonant and nonresonant magnetic fluctuation spectrum and compared with observations. The theoretical heating rate is sufficient to account for the observed twofold rise in ion temperature during sawtooth events in experimental discharges. © 2001 American Institute of Physics. @DOI: 10.1063/1.1348035#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UW-CPTC 09-11R Transport equations in tokamak plasmas

Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for: neoclassical effects on the parallel Ohm’s law; fluctuation-induced transport; heating, current-drive and flow sources and sinks; small magnetic field non-axisymmetries; magnetic field t...

متن کامل

Transport equations in tokamak plasmas

Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm’s law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field tra...

متن کامل

Characteristics of High-Ion-Temperature Plasmas heated by Neutral Beams in the Large Helical Device

Improvement of ion heat transport in Heliotron plasmas has been realized by upgrade of ion heating power by using low energy neutral beam (NB) in the Large Helical Device (LHD). Ion internal transport barrier (ITB) (the peaked profile of ion temperature (Ti) with steep gradient in the core region) has been formed and the central Ti of 6.8 keV has been achieved in hydrogen plasma with the line-a...

متن کامل

UW-CPTC 08-7R Toroidal flow and radial particle flux in tokamak plasmas

Many effects influence toroidal flow evolution in tokamak plasmas. Momentum sources and radial transport due to collisional processes and microturbulence-induced anomalous transport are usually considered. In addition, toroidal flow can be affected by non-axisymmetric magnetic fields; resonant components cause localized electromagnetic toroidal torques near rational surfaces in flowing plasmas ...

متن کامل

Role of Impurity Cyclotron Damping in Ion Heating and RFP Turbulence

In the reversed field pinch ions are heated anomalously relative to collisional energy exchange with Ohmically heated electrons. The process channels electron energy to ions in a way that is still not understood. Recent observations suggest that impurities are preferentially heated. A theory for ion heating via impurity ioncyclotron-resonant damping of the turbulent energy cascaded from unstabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001