Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell.
نویسندگان
چکیده
We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size.
منابع مشابه
Particle-bubble interaction inside a Hele-Shaw cell.
Hydrodynamic interactions between air bubbles and particles have wide applications in multiphase separation and reaction processes. In the present work, we explore the fundamental mechanism of such complex processes by studying the collision of a single bubble with a fixed solid particle inside a Hele-Shaw cell. Physical experiments show that an air bubble either splits or slides around the par...
متن کاملSelection of the Taylor-Saffman bubble does not require surface tension.
A new general class of exact solutions is presented for the time evolution of a bubble of arbitrary initial shape in a Hele-Shaw cell when surface tension effects are neglected. These solutions are obtained by conformal mapping the viscous flow domain to an annulus in an auxiliary complex plane. It is then demonstrated that the only stable fixed point (attractor) of the nonsingular bubble dynam...
متن کاملGlobal Existence for a Translating Near-Circular Hele-Shaw Bubble with Surface Tension
This paper concerns global existence for arbitrary nonzero surface tension of bubbles in a Hele-Shaw cell that translate in the presence of a pressure gradient. When the cell width to bubble size is sufficiently large, we show that a unique steady translating near-circular bubble symmetric about the channel centerline exists, where the bubble translation speed in the laboratory frame is found a...
متن کاملExperimental study of the shape and motion of flattened drops in a Hele-Shaw Cell
> The motion and shape of a flattened drop and bubble through another continuous liquid phase (conveying phase) are investigated experimentally, using a narrow gap HeleShaw cell. Seven different liquid-liqu...
متن کاملHow a Long Bubble Shrinks: a Numerical Method for an Unforced Hele-Shaw Flow
We develop a numerical method for solving a free boundary problem which describes shape relaxation, by surface tension, of a long and thin bubble of an inviscid fluid trapped inside a viscous fluid in a Hele-Shaw cell. The method of solution of the exterior Dirichlet problem employs a classical boundary integral formulation. Our version of the numerical method is especially advantageous for fol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 94 2-1 شماره
صفحات -
تاریخ انتشار 2016