Rational Interpolation at Chebyshev points

نویسندگان

  • L. Gemignani
  • LUCA GEMIGNANI
  • Luca Gemignani
چکیده

The Lanczos method and its variants can be used to solve eeciently the rational interpolation problem. In this paper we present a suitable fast modiication of a general look-ahed version of the Lanczos process in order to deal with polynomials expressed in the Chebyshev orthogonal basis. The proposed approach is particularly suited for rational interpolation at Chebyshev points, that is, at the zeros of Chebyshev polynomials. In fact, in this case it overcomes some of the numerical diiculties which limited the applicability of the look-ahed Lanczos process for determining the coeecients both of the numerators and of the denominators with respect to the standard power basis. .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Barycentric Interpolation Formulas

The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...

متن کامل

Stability of Barycentric Interpolation Formulas for Extrapolation

The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...

متن کامل

Bounding the Lebesgue constant for Berrut's rational interpolant at general nodes

It has recently been shown that the Lebesgue constant for Berrut’s rational interpolant at equidistant nodes grows logarithmically in the number of interpolation nodes. In this paper we show that the same holds for a very general class of well-spaced nodes and essentially any distribution of nodes that satisfy a certain regularity condition, including Chebyshev–Gauss–Lobatto nodes as well as ex...

متن کامل

Fast and Stable Rational Interpolation in Roots of Unity and Chebyshev Points

A new method for interpolation by rational functions of prescribed numerator and denominator degrees is presented. When the interpolation nodes are roots of unity or Chebyshev points, the algorithm is particularly simple and relies on discrete Fourier transform matrices, which results in a fast implementation using the Fast Fourier Transform. The method is generalised for arbitrary grids, which...

متن کامل

Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995