MilkyWay@home: Harnessing volunteer computers to constrain dark matter in the Milky Way

نویسندگان

  • Heidi Jo Newberg
  • Matthew Newby
  • Travis Desell
  • Malik Magdon-Ismail
  • Boleslaw Szymanski
  • Carlos Varela
چکیده

MilkyWay@home is a volunteer computing project that allows people from every country in the world to volunteer their otherwise idle processors to Milky Way research. Currently, more than 25,000 people (150,000 since November 9, 2007) contribute about half a PetaFLOPS of computing power to our project. We currently run two types of applications: one application fits the spatial density profile of tidal streams using statistical photometric parallax, and the other application finds the N -body simulation parameters that produce tidal streams that best match the measured density profile of known tidal streams. The stream fitting application is well developed and is producing published results. The Sagittarius dwarf leading tidal tail has been fit, and the algorithm is currently running on the trailing tidal tail and bifurcated pieces. We will soon have a self-consistent model for the density of the smooth component of the stellar halo and the largest tidal streams. The N -body application has been implemented for fitting dwarf galaxy progenitor properties only, and is in the testing stages. We use an Earth-Mover Distance method to measure goodness-of-fit for density of stars along the tidal stream. We will add additional spatial dimensions as well as kinematic measures in a piecemeal fashion, with the eventual goal of fitting the orbit and parameters of the Milky Way potential (and thus the density distribution of dark matter) using multiple tidal streams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

computers to constrain dark matter in the Milky Way

MilkyWay@home is a volunteer computing project that allows people from every country in the world to volunteer their otherwise idle processors to Milky Way research. Currently, more than 25,000 people (150,000 since November 9, 2007) contribute about half a PetaFLOPS of computing power to our project. We currently run two types of applications: one application fits the spatial density profile o...

متن کامل

Evolutionary N -Body Simulations to Determine the Origin and Structure of the Milky Way Galaxy’s Halo using Volunteer Computing

The MilkyWay@Home project uses N -body simulations to model the formation of the Milky Way galaxy’s halo. While there have been previous efforts to use N body simulations to perform astronomical modeling, to our knowledge, this is the first time that evolutionary algorithms are used to discover the best initial parameters of the simulations so that they accurately model observed data. Performin...

متن کامل

Evolutionary Algorithms on Volunteer Computing Platforms: The MilkyWay@Home Project

Evolutionary algorithms (EAs) require large scale computing resources when tackling real world problems. Such computational requirement is derived from inherently complex fitness evaluation functions, large numbers of individuals per generation, and the number of iterations required by EAs to converge to a satisfactory solution. Therefore, any source of computing power can significantly benefit...

متن کامل

Sterile Neutrinos in the Milky Way: Observational Constraints

We consider the possibility of constraining decaying dark matter by looking out through the Milky Way halo. Specifically we use Chandra blank sky observations to constrain the parameter space of sterile neutrinos. We find that a broad band in parameter space is still open, leaving the sterile neutrino as an excellent dark matter candidate. Subject headings: dark matter — elementary particles — ...

متن کامل

Accelerating the MilkyWay@Home Volunteer Computing Project with GPUs

General-Purpose computing on Graphics Processing Units (GPGPU) is an emerging field of research which allows software developers to utilize the significant amount of computing resources GPUs provide for a wider range of applications. While traditional high performance computing environments such as clusters, grids and supercomputers require significant architectural modifications to incorporate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013