CpKLP1: A CALMODULIN-BINDING KINESIN-LIKE PROTEIN FROM CYANOPHORA PARADOXA (GLAUCOPHYTA).

نویسندگان

  • Salah E Abdel-Ghany
  • Paul Kugrens
  • A S N Reddy
چکیده

KCBP (kinesin-like calmodulin [CaM]-binding proteins), a member of the carboxy-terminal kinesin-like proteins (KLPs), is unique among KLPs in having a CaM-binding domain (CBD). CaM-binding KLPs have been identified from flowering plants and the sea urchin. To determine if CaM-binding KLP is present in phylogenetically divergent protists, we probed Cyanophora paradoxa protein extract with affinity-purified KCBP antibody. The KCBP antibody detected a polypeptide with a molecular mass of about 133 kDa in the crude extract. In a CaM-Sepharose column-purified fraction, the same band was detected with both KCBP antibody and biotinylated CaM. In a PCR reaction using degenerate primers corresponding to two conserved regions in the motor domain of kinesin, a 500-bp fragment (CpKLP1) was amplified from a cDNA library. The predicted amino acid sequence of CpKLP1 showed significant sequence similarity with KCBPs. In phylogenetic analysis, CpKLP1 fell into the KCBP group within the carboxy-terminal subfamily. These biochemical data, sequence, and phylogenetic analysis strongly suggest the presence of a calmodulin-binding KLP in C. paradoxa and that it is related to Ca2 +/calmodulin regulated KLPs from plants. This is the first report on identification of any motor protein in C. paradoxa. Furthermore, our data suggest that CaM-binding KLPs may have evolved long before the divergence of plants and animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mitochondrial Genomes of the Glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: Multilocus Phylogenetics Suggests a Monophyletic Archaeplastida

A significant limitation when testing the putative single origin of primary plastids and the monophyly of the Archaeplastida supergroup, comprised of the red algae, viridiplants, and glaucophytes, is the scarce nuclear and organellar genome data available from the latter lineage. The Glaucophyta are a key algal group when investigating the origin and early diversification of photosynthetic euka...

متن کامل

Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation

Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora para...

متن کامل

Nucleotide substitution analyses of the glaucophyte Cyanophora suggest an ancestrally lower mutation rate in plastid vs mitochondrial DNA for the Archaeplastida.

A lot is known about the evolution and architecture of plastid, mitochondrial, and nuclear genomes, but surprisingly little is known about their relative rates of mutation. Most available relative-rate data come from seed plants, which, with few exceptions, have a mitochondrial mutation rate that is lower than those of the plastid and nucleus. But new findings from diverse plastid-bearing linea...

متن کامل

Gene nadA, Encoding Quinolinate Synthetase, Is Located on the Cyanelle DNA from Cyanophora paradoxa.

We report the nucleotide sequence of gene nadA and its location on cyanelle (= plastid) DNA of the unicellular alga Cyanophora paradoxa. The gene is located on the circular (-128 kbp) (2) cyanelle chromosome. It is flanked by gene apcD (7), and it is close to a recently identified SI0-spc nbosomal protein gene cluster (8), the expression of which we study. The sequence, 1305 nucleotides in leng...

متن کامل

Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants.

The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of phycology

دوره 36 4  شماره 

صفحات  -

تاریخ انتشار 2000