Sintering Behavior of 0.8 mol%-CuO-Doped 3Y-TZP Ceramics

نویسندگان

  • Shen Ran
  • Louis Winnubst
  • Dave H. A. Blank
چکیده

In recent years, 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) doped with copper oxide has obtained increasing interest due to its enhanced superplastisity and good potential in tribological applications. In this work, the effect of addition of small amounts (0.8 mol%) of copper oxide on the sintering behavior of 3Y-TZP was studied using a dilatometer and high-temperature X-ray diffraction (XRD). A qualitative sintering model was established based on several reactions during sintering as indicated by thermal analysis and XRD. Some of these reactions remarkably retard densification and consequently result in low final density (86%) of the sample sintered at 14001C in air. The reaction between molten Cu2O and yttria as segregated to the Y-TZP grain boundaries at around 11801C leads to the depletion of yttria from Y-TZP grains, which results in the formation of monoclinic phase during cooling. A relatively higher oxygen partial pressure can inhibit the dissociation of CuO to Cu2O. This inhibition in dissociation is one of the reasons why a dense (496%) 0.8 mol% CuO-doped 3Y-TZP ceramic can be obtained after sintering at 14001C in flowing oxygen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ceramic Composites of 3Y-TZP Doped With CuO: Processing, microstructure and tribology

In recent years, 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) doped with copper oxide has obtained increasing interest due to its enhanced superplasticity and good potential in tribological applications. In this work, the effect of addition of small amounts (0.8 mol%) of CuO on the sintering behaviour of 3Y-TZP was studied using a dilatometer and high temperature X-ray dif...

متن کامل

The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO3/3Y-TZP Composites

Composite ceramics BaTiO₃/3Y-TZP containing 0 mol %, 3 mol %, 5 mol %, 7 mol %, and 10 mol % BaTiO₃ have been prepared by conventional sintering and spark-plasma sintering (SPS), respectively. Analysis of the XRD patterns and Raman spectra reveal that the phase composition of t-ZrO₂, m-ZrO₂, and BaTiO₃ has been obtained. Our results indicate that SPS can be effective for the decrease in grain s...

متن کامل

Studying the Effects of Nano Sintering Additives on Microstructure and Electrical Properties of Potassium-Sodium Niobate Piezoceramics

In this paper, lead free (K0.48,Na0.52)NbO3 (KNN(48-52)) piezoelectric ceramics were made by conventional solid state sintering process. Additives of nano ZnO (n-ZnO), nano CuO (n-CuO) and nano SnO2 (n-SnO2) were used in order to decrease the sintering temperature, as well as modifying the dielectric, piezoelectric and ferroelectric propert...

متن کامل

Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation.

Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation ...

متن کامل

The Effect of a Small Amount SiO2 on Sintering Kinetics of Tetragonal Zirconia Nanopowders

In the present paper the sintering behavior of 3 mol% yttria-stabilized zirconia (3Y-TZP) with and without small amount (0.2 wt %) of SiO2 additive was investigated. It has been studied the silica impact which was added in two ways (co-precipitation and mechanical mixing) on sintering kinetics of 3Y-TZP nanopowders at the initial sintering stage. It was found the silica additive leads to the ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005