Accelerated Conformational Entropy Calculations Using Graphic Processing Units

نویسندگان

  • Qian Zhang
  • Junmei Wang
  • Ginés D. Guerrero
  • José M. Cecilia
  • José M. García
  • Youyong Li
  • Horacio Emilio Pérez Sánchez
  • Tingjun Hou
چکیده

Conformational entropy calculation, usually computed by normal-mode analysis (NMA) or quasi harmonic analysis (QHA), is extremely time-consuming. Here, instead of NMA or QHA, a solvent accessible surface area (SASA) based model was employed to compute the conformational entropy, and a new fast GPU-based method called MURCIA (Molecular Unburied Rapid Calculation of Individual Areas) was implemented to accelerate the calculation of SASA for each atom. MURCIA employs two different kernels to determine the neighbors of each atom. The first kernel (K1) uses brute force for the calculation of the neighbors of atoms, while the second one (K2) uses an advanced algorithm involving hardware interpolations via GPU texture memory unit for such purpose. These two kernels yield very similar results. Each kernel has its own advantages depending on the protein size. K1 performs better than K2 when the size is small and vice versa. The algorithm was extensively evaluated for four protein data sets and achieves good results for all of them. This GPU-accelerated version is ∼600 times faster than the former sequential algorithm when the number of the atoms in a protein is up to 10⁵.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relativistic Hydrodynamics on Graphic Cards

We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of highenergetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based...

متن کامل

Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units

In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...

متن کامل

Modeling Seismic Wave Propagation Using Graphics Processor Units (GPU)

The main drawback of the seismic modeling in 2D viscoelastic media on a single PC is that simulations with large gridsizes require a tremendous amount of floating point calculations. To improve computation speedup, a graphic processing units (GPUs) accelerated method was proposed using the staggered-grid finite difference (FD) method. The geophysical model is decomposed into subdomains for PML ...

متن کامل

Distinguishability in Entropy Calculations: Chemical Reactions, Conformational and Residual Entropy

By analyzing different examples of practical entropy calculations and using concepts such as conformational and residual entropies, I show herein that experimental calorimetric entropies of single molecules can be theoretically reproduced considering chemically identical atoms either as distinguishable or indistinguishable particles. The broadly used correction in entropy calculations due to th...

متن کامل

Accelerating VASP electronic structure calculations using graphic processing units

We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 53 8  شماره 

صفحات  -

تاریخ انتشار 2013