The lawful imprecision of human surface tilt estimation in natural scenes

نویسندگان

  • Seha Kim
  • Johannes Burge
چکیده

Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Southampton-York Natural Scenes (SYNS) dataset: Statistics of surface attitude

Recovering 3D scenes from 2D images is an under-constrained task; optimal estimation depends upon knowledge of the underlying scene statistics. Here we introduce the Southampton-York Natural Scenes dataset (SYNS: https://syns.soton.ac.uk), which provides comprehensive scene statistics useful for understanding biological vision and for improving machine vision systems. In order to capture the di...

متن کامل

Corrigendum: The Southampton-York Natural Scenes (SYNS) dataset: Statistics of surface attitude

Recovering 3D scenes from 2D images is an under-constrained task; optimal estimation depends upon knowledge of the underlying scene statistics. Here we introduce the Southampton-York Natural Scenes dataset (SYNS: https://syns.soton.ac.uk), which provides comprehensive scene statistics useful for understanding biological vision and for improving machine vision systems. In order to capture the di...

متن کامل

Estimating 3D tilt from local image cues in natural scenes

Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely c...

متن کامل

بررسی های باستان سنجی در تپه حصار دامغان با استفاده از روش های گرانی سنجی و مغناطیس سنجی

Research and exploration of the remaining relics from the past has special importance in identifying the date, history and the identity of a country. Development and the advancement of human knowledge have offered new methods for the detection archaeological sites that by using them without the need for excavation and destruction of antiquities can be found useful information. Today, the non-de...

متن کامل

A Statistical Technique for Recovering Surface Orientation from Texture in Natural Imagery

A statistical method is reported for inferring the shape and orientation of irregularly marked surfaces using image geometry. The basis for solving this problem lies in an understanding of projective geometry, coupled with simple statistical models of the contour generating process. This approach is first applied to the special case of surfaces known to be planar. The distortion of contour shap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018