Decline of Geladandong Glacier Elevation in Yangtze River's Source Region: Detection by ICESat and Assessment by Hydroclimatic Data
نویسندگان
چکیده
Several studies have indicated that glaciers in the Qinghai-Tibet plateau are thinning, resulting in reduced water supplies to major rivers such as the Yangtze, Yellow, Lancang, Indus, Ganges, Brahmaputra in China, and south Asia. Three rivers in the upstream of Yangtze River originate from glaciers around the Geladandong snow mountain group in central Tibet. Here we used elevation observations from Ice, Cloud, and land Elevation Satellite (ICESat) and reference elevations from a 3-arc-second digital elevation model (DEM) of Shuttle Radar Terrestrial Mission (SRTM), assisted with Landsat-7 images, to detect glacier elevation changes in the western (A), central (B), and eastern (C) regions of Geladandong. Robust fitting was used to determine rates of glacier elevation changes in regions with dense ICESat data, whereas a new method called rate averaging was employed to find rates in regions of low data density. The rate of elevation change was −0.158 ± 0.066 m·a−1 over 2003–2009 in the entire Geladandong and it was −0.176 ± 0.102 m·a−1 over 2003–2008 in Region C (by robust fitting). The rates in Regions A, B, and C were −0.418 ± 0.322 m·a−1 (2000–2009), −0.432 ± 0.020 m·a−1 (2000–2003), and −0.321 ± 0.139 m·a−1 (2000–2008) (by rate averaging). We used in situ hydroclimatic dataset to assess these negative rates: the glacier thinning was caused by temperature rises around Geladandong, based on the temperature records over 1979–2009, 1957–2013, and 1966–2013 at stations Tuotuohe, Wudaoliang, and Anduo. The thinning Geladandong glaciers led to increased discharges recorded at the river gauge stations Tuotuohe and Chumda over 1956–2012. An unabated Geladandong glacier melting will reduce its long-term water supply to the Yangtze River Basin, causing irreversible socioeconomic consequences and seriously degrading the ecological system of the Yangtze River Basin.
منابع مشابه
Estimation of Mass Balance of the Grosser Aletschgletscher, Swiss Alps, from ICESat Laser Altimetry Data and Digital Elevation Models
Traditional glaciological mass balance measurements of mountain glaciers are a demanding and cost intensive task. In this study, we combine data from the Ice Cloud and Elevation Satellite (ICESat) acquired between 2003 and 2009 with air and space borne Digital Elevation Models (DEMs) in order to derive surface elevation changes of the Grosser Aletschgletscher in the Swiss Alps. Three different ...
متن کاملRegistering imagery to ICESat data for measuring elevation changes on Byrd Glacier, Antarctica
[1] We present a new approach to derive control information from ICESat data that enables rigorous registration of aerial and satellite imagery. The technique, based on matching terrain features identified from ICESat measurements and aerial imagery, opens the door to transform results of previous studies to a global reference frame. We demonstrate the proposed methodology with historical aeria...
متن کاملIce elevations and surface change on the Malaspina Glacier, Alaska
[1] Here we use Ice, Cloud and land Elevation Satellite (ICESat)-derived elevations and surface characteristics to investigate the Malaspina Glacier of southern Alaska. Although there is significant elevation variability between ICESat tracks on this glacier, we were able to discern general patterns in surface elevation change by using a regional digital elevation model (DEM) as a reference sur...
متن کاملVariations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003ÂŒ09
Water level fluctuations of inland lakes are related to regional-scale climate changes, and reflect variations in evaporation, precipitation and glacier meltwater flowing into the lake area in its catchment. In this paper, Ice, Cloud and land Elevation Satellite (ICESat) altimeter data and Landsat imagery (2002–09) are used to estimate Nam Co lake (Nyainqentanglha range, Tibetan Plateau) water ...
متن کاملCo-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change
There are an increasing number of digital elevation models (DEMs) available worldwide for deriving elevation differences over time, including vertical changes on glaciers. Most of these DEMs are heavily post-processed or merged, so that physical error modelling becomes difficult and statistical error modelling is required instead. We propose a three-step methodological framework for assessing a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017