3D Analytic Cone-Beam Reconstruction for Multiaxial CT Acquisitions
نویسندگان
چکیده
A conventional 3rd generation Computed Tomography (CT) system with a single circular source trajectory is limited in terms of longitudinal scan coverage since extending the scan coverage beyond 40 mm results in significant cone-beam artifacts. A multiaxial CT acquisition is achieved by combining multiple sequential 3rd generation axial scans or by performing a single axial multisource CT scan with multiple longitudinally offset sources. Data from multiple axial scans or multiple sources provide complementary information. For full-scan acquisitions, we present a window-based 3D analytic cone-beam reconstruction algorithm by tessellating data from neighboring axial datasets. We also show that multi-axial CT acquisition can extend the axial scan coverage while minimizing cone-beam artifacts. For half-scan acquisitions, one cannot take advantage of conjugate rays. We propose a cone-angle dependent weighting approach to combine multi-axial half-scan data. We compute the relative contribution from each axial dataset to each voxel based on the X-ray beam collimation, the respective cone-angles, and the spacing between the axial scans. We present numerical experiments to demonstrate that the proposed techniques successfully reduce cone-beam artifacts at very large volumetric coverage.
منابع مشابه
Improving iterative 4D CBCT through the use of motion information
In Image-Guided RadioTherapy (IGRT) of lung tumors, patients undergo a 4D CT, on the basis of which their treatment is planned. It is implicitely assumed that their breathing motion will not change much throughout the treatment, and remain close to what it was during the 4D CT acquisition. During the treatment, several cone beam CT acquisitions are performed, and used to re-position the patient...
متن کاملGPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume
Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs) has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into...
متن کاملMethods to evaluate the performance of kilovoltage cone-beam computed tomography in the three-dimensional reconstruction space
Background: Cone-beam computed tomography (CBCT) scanners for image-guided radiotherapy are in clinical use today, but there has been no consensus on uniform acceptance to verify the CBCT image quality yet. The present work proposed new methods to fully evaluate the performance of CBCT in its three-dimensional (3D) reconstruction space. Materials and Methods: Compared to the traditional methods...
متن کاملEvaluation of the gray level in CBCT systems and its relationship with HU in CT Scanners
Introduction: Cone-beam CT (CBCT) is an imaging system which offers three-dimensional (3D), multiplanar images and has many advantages over computed tomography (CT) including shorter acquisition times for the resolution desired in dentistry, lower radiation dose to the patient, reasonable price and higher spatial resolution but CBCT scanners are unable to display actual Hounsf...
متن کاملMulti - slice CT Technology 3
3.3 Multi-slice CT Acquisition and Reconstruction for Body Imaging 52 3.3.1 Defi nition of the Pitch 52 3.3.2 The Cone-Angle Problem in Multi-slice CT 53 3.3.3 Multi-slice Spiral Reconstruction Neglecting the Cone-Beam Geometry 54 3.3.3.1 180° and 360° Multi-slice Linear Interpolation 54 3.3.3.2 z-Filter Approaches 56 3.3.4 Multi-slice Spiral Reconstruction with Cone-Beam Algorithms 58 3.3.4.1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009