Division of the Humanities and Social Sciences California Institute of Technology Pasadena, California 91125 an Empirical Bayes Approach to Estimating Ordinal Treatment Effects

نویسندگان

  • R. Michael Alvarez
  • Jonathan N. Katz
  • Delia Bailey
چکیده

Ordinal variables — categorical variables with a defined order to the categories, but without equal spacing between them — are frequently used in social science applications. Although a good deal of research exists on the proper modeling of ordinal response variables, there is not a clear directive as to how to model ordinal treatment variables. The usual approaches found in the literature for using ordinal treatment variables are either to use fully unconstrained, though additive, ordinal group indicators or to use a numeric predictor constrained to be continuous. Generalized additive models are a useful exception to these assumptions (Beck and Jackman 1998). In contrast to the generalized additive modeling approach, we propose the use of a Bayesian shrinkage estimator to model ordinal treatment variables. The estimator we discuss in this paper allows the model to contain both individual group level indicators and a continuous predictor. In contrast to traditionally used shrinkage models that pull the data toward a common mean, we use a linear model as the basis. Thus, each individual effect can be arbitrary, but the model “shrinks” the estimates toward a linear ordinal framework according to the data. We demonstrate the estimator on two political science examples: the impact of voter identification requirements on turnout (Alvarez, Bailey, and Katz 2007), and the impact of the frequency of religious service attendance on the liberality of abortion attitudes (e.g., Singh and Leahy 1978, Tedrow and Mahoney 1979, Combs and Welch 1982).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nber Working Paper Series Experimenting with Measurement Error: Techniques with Applications to the Caltech Cohort Study

Measurement error is ubiquitous in experimental work. It leads to imperfect statistical controls, attenuated estimated effects of elicited behaviors, and biased correlations between characteristics. We develop simple statistical techniques for dealing with experimental measurement error. These techniques are applied to data from the Caltech Cohort Study, which conducts repeated incentivized sur...

متن کامل

Division of the Humanities and Social Sciences California Institute of Technology Pasadena, California 91125 Aggregation and Dynamics of Survey Responses: the Case of Presidential Approval

In this paper we critique much of the empirical literature on the important political science concept of presidential approval. Much of the recent research on presidential approval has focused on the dynamic nature of approval; arguments have raged about whether presidential approval is integrated, co-integrated, or fractionally integrated. We argue that none of these time-series concepts, impo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008