Expression of transcripts encoding AMPA receptor subunits and associated postsynaptic proteins in the macaque brain.
نویسندگان
چکیده
Glutamate is the primary excitatory neurotransmitter in the central nervous system, regulating numerous cellular signaling pathways and controlling the excitability of central synapses both pre- and postsynaptically. Localization, cell surface expression, and activity-dependent regulation of glutamate receptors in both neurons and glia are performed and maintained by a complex network of protein-protein interactions associated with targeting, anchoring, and spatially organizing synaptic proteins at the cell membrane. Using in situ hybridization, we examined the expression of transcripts encoding the AMPA receptor subunits (GluR1-GluR4) and a family of AMPA-related intracellular proteins. We focused on PDZ-proteins that are involved in the regulated pool and anchoring AMPA subunits to the cell membrane (PICK1, syntenin), and those maintaining the constitutive pool of AMPA receptors at the glutamatergic synapse (NSF, stargazin). In addition, we studied a fifth protein, KIAA1719, with high homology to the rat PDZ protein ABP, associated with the clustering of AMPA receptors at the glutamate synapse. The AMPA subunits showed significant differences in regional expression, especially in the neocortex, thalamus, striatum, and cerebellum. The expression of other proteins, even those related to a specific AMPA subunit (such as ABP and PICK1 to GluR2 and GluR3), often had different distributions, whereas others (like NSF) are ubiquitously distributed in the brain. These results suggest that AMPA subunits and related intracellular proteins are differentially distributed in the macaque brain, and in numerous structures there are significant mismatches, suggesting additional functional properties of the associated intracellular proteins..
منابع مشابه
Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملتاثیر محرومیت از بینایی طی دوره بحرانی تکامل مغز بر بیان زیرواحدهای گیرنده AMPA در هیپوکامپ موش صحرایی
Background: Environmental signals have an essential role in the maturation of neural circuits during critical period of brain development. It has been shown that, change in visual signals during critical period of brain development changes structure and function of glutamate receptors in the visual cortex. After processing in visual cortex, part of visual signals goes to the hippocampus and mak...
متن کاملExpression and sequences of genes encoding glutamate receptors and transporters in primate retina determined using 3'-end amplification polymerase chain reaction.
PURPOSE Our long-term goal is to compare how expression of glutamate receptor and non-vesicular transporter subunits differs between single neurons in the primate retina. Here we set out to ascertain general expression in the retina of Macaca fascicularis using a robust technique suitable for both levels of analysis. We constructed full-complement cDNAs from whole retina RNA using a protocol op...
متن کاملQuantitative Analysis of GABAA Gamma Receptor Subunits in the Developing Embryonic Chick Forebrain
Objective(s) In this study we investigated the expression of GABAA receptor subunits during brain development. These receptors may change in the embryonic chick forebrain. Materials and Methodes The expression levels of four types of GABAA receptor gamma subunits (γ1, γ2, γ3 and γ4) were quantified in the embryonic chick forebrain at 32 hr, 3, 7, 14, and 20 days of incubation and day one aft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 468 4 شماره
صفحات -
تاریخ انتشار 2004