Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens
نویسندگان
چکیده
The application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here, we compare the efficacy of genome-wide CRISPR/Cas9-mediated forward genetic screens versus gene-trap mutagenesis screens in haploid human cells, which represent the existing 'gold standard' method. This head-to-head comparison aimed to identify genes required for the endoplasmic reticulum-associated degradation (ERAD) of MHC class I molecules. The two approaches show high concordance (>70%), successfully identifying the majority of the known components of the canonical glycoprotein ERAD pathway. Both screens also identify a role for the uncharacterized gene TXNDC11, which we show encodes an EDEM2/3-associated disulphide reductase. Genome-wide CRISPR/Cas9-mediated screens together with haploid genetic screens provide a powerful addition to the forward genetic toolbox.
منابع مشابه
Fluorescence-Based Phenotypic Selection Allows Forward Genetic Screens in Haploid Human Cells
The isolation of haploid cell lines has recently allowed the power of forward genetic screens to be applied to mammalian cells. The interest in applying this powerful genetic approach to a mammalian system is only tempered by the limited utility of these screens, if confined to lethal phenotypes. Here we expand the scope of these approaches beyond live/dead screens and show that selection for a...
متن کاملExtensive mapping of an innate immune network with CRISPR
The application of the CRISPR‐Cas9 system marks a major breakthrough for genetic screens, particularly in mammalian cells where high‐throughput targeted gene editing has been lacking. Parnas et al (2015) apply this screening technology to mouse bone marrow‐derived dendritic cells in order to study the regulation of the immune response triggered by PAMPs. Through integrated analysis of gene knoc...
متن کاملHaSAPPy: A tool for candidate identification in pooled forward genetic screens of haploid mammalian cells
Haploid cells are increasingly used for screening of complex pathways in animal genomes. Hemizygous mutations introduced through viral insertional mutagenesis can be directly selected for phenotypic changes. Here we present HaSAPPy a tool for analysing sequencing datasets of screens using insertional mutations in large pools of haploid cells. Candidate gene prediction is implemented through ide...
متن کاملGenome Editing Using Mammalian Haploid Cells
Haploid cells are useful for studying gene functions because disruption of a single allele can cause loss-of-function phenotypes. Recent success in generating haploid embryonic stem cells (ESCs) in mice, rats, and monkeys provides a new platform for simple genetic manipulation of the mammalian genome. Use of haploid ESCs enhances the genome-editing potential of the CRISPR/Cas system. For exampl...
متن کاملSimple Meets Single: The Application of CRISPR/Cas9 in Haploid Embryonic Stem Cells
The CRISPR/Cas9 system provides a powerful method for the genetic manipulation of the mammalian genome, allowing knockout of individual genes as well as the generation of genome-wide knockout cell libraries for genetic screening. However, the diploid status of most mammalian cells restricts the application of CRISPR/Cas9 in genetic screening. Mammalian haploid embryonic stem cells (haESCs) have...
متن کامل