PHAGOCYTES CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells
نویسندگان
چکیده
We analyzed herein whether members of the tetraspanin superfamily are involved in human immature dendritic cell (DC) functions such as foreign antigen internalization, phagocytosis, and cell migration. We show that CD63, CD9, CD81, CD82, and CD151 are present in immature DCs. Whereas CD9 and CD81 are mostly expressed at the cell surface, CD63 and CD82 are also located in intracellular organelles. Complexes of monoclonal antibody (Mab) FC-5.01-CD63 or Fab-5.01-CD63 were rapidly translocated “outside-in” and followed the endocytic pathway through early endosomes and lysosomes, reaching major histocompatibility complex (MHC) class II– enriched compartments (MIICs) in less than one hour. Internalization of CD63 was also observed during Saccharomyces cerevisiae phagocytosis. Moreover, an association of CD63 with the -glycan receptor dectin-1 was observed. Mabs against CD9, CD63, CD81, and CD82 enhanced by 50% the migration induced by the chemokines macrophage inflammatory protein-5 (MIP-5) and MIP-1 . Concomitantly, Mabs against CD63 and CD82 diminished the surface expression of CD29, CD11b, CD18, and 5 integrins. By immunoprecipitation experiments we found that CD63 associated with integrins CD11b and CD18. These results suggest that CD9, CD63, CD81, and CD82 could play a role in modulating the interactions between immature DCs and their environment, slowing their migratory ability. However, only CD63 would intervene in the internalization of complex antigens. (Blood. 2004; 104:1183-1190)
منابع مشابه
CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells.
We analyzed herein whether members of the tetraspanin superfamily are involved in human immature dendritic cell (DC) functions such as foreign antigen internalization, phagocytosis, and cell migration. We show that CD63, CD9, CD81, CD82, and CD151 are present in immature DCs. Whereas CD9 and CD81 are mostly expressed at the cell surface, CD63 and CD82 are also located in intracellular organelle...
متن کاملEnhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities
A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is...
متن کاملAssociation of distinct tetraspanins with MHC class II molecules at different subcellular locations in human immature dendritic cells.
Dendritic cells have the capacity to trigger T cell responses in lymphoid organs against antigens captured in the periphery. T cell stimulation depends on the ability of MHC class II molecules to present peptides at the cell surface that are acquired in MHC class II compartments. The high capacity of dendritic cells to stimulate T lymphocytes is related to their ability to regulate the distribu...
متن کاملTetraspanin CD63 is a regulator of HIV-1 replication.
Macrophages and CD4(+) T-cells are the major reservoirs for HIV-1 infection. CD63 is a tetraspanin transmembrane protein, which has been shown to play an essential role during HIV-1 replication in macrophages. In this study, we further confirm the requirement of CD63 in HIV-1 replication events in primary human CD4(+) T-cells, dendritic cells, and a CD4(+) cell line. Most interestingly, we also...
متن کاملCorrection: Correlations between Transmembrane 4 L6 Family Member 5 (TM4SF5), CD151, and CD63 in Liver Fibrotic Phenotypes and Hepatic Migration and Invasive Capacities
Transmembrane 4 L6 family member 5 (TM4SF5) is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs) consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship b...
متن کامل