Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs
نویسندگان
چکیده
We study the normal approximation of functionals of Poisson measures having the form of a finite sum of multiple integrals. When the integrands are nonnegative, our results yield necessary and sufficient conditions for central limit theorems. These conditions can always be expressed in terms of contraction operators or, equivalently, fourth cumulants. Our findings are specifically tailored to deal with the normal approximation of the geometric U -statistics introduced by Reitzner and Schulte (2011). In particular, we shall provide a new analytic characterization of geometric random graphs whose edge-counting statistics exhibit asymptotic Gaussian fluctuations, and describe a new form of Poisson convergence for stationary random graphs with sparse connections. In a companion paper, the above analysis is extended to general U -statistics of marked point processes with possibly rescaled kernels.
منابع مشابه
Fine Gaussian fluctuations on the Poisson space II : rescaled kernels , marked processes and geometric U - statistics
Continuing the analysis initiated in Lachièze-Rey and Peccati (2011), we use contraction operators to study the normal approximation of random variables having the form of a U -statistic written on the points in the support of a random Poisson measure. Applications are provided: to subgraph counting, to boolean models and to coverage of random networks.
متن کاملPortmanteau inequalities on the Poisson space: mixed regimes and multidimensional clustering
Using Malliavin operators together with an interpolation technique inspired by Arratia, Goldstein and Gordon (1989), we prove a new inequality on the Poisson space, allowing one to measure the distance between the laws of a general random vector, and of a target random element composed of Gaussian and Poisson random variables. Several consequences are deduced from this result, in particular: (1...
متن کاملOn the bounds in Poisson approximation for independent geometric distributed random variables
The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method. Some results related to random sums of independent geometric distributed random variables are also investigated.
متن کاملCumulant operators for Lie-Wiener-Itô-Poisson stochastic integrals
The classical combinatorial relations between moments and cumulants of random variables are generalized into covariance-moment identities for stochastic integrals and divergence operators. This approach is based on cumulant operators defined by the Malliavin calculus in a general framework that includes Itô-Wiener and Poisson stochastic integrals as well as the Lie-Wiener path space. In particu...
متن کاملMoments, cumulants and diagram formulae for non-linear functionals of random measures
This survey provides a unified discussion of multiple integrals, moments, cumulants and diagram formulae associated with functionals of completely random measures. Our approach is combinatorial, as it is based on the algebraic formalism of partition lattices and Möbius functions. Gaussian and Poisson measures are treated in great detail. We also present several combinatorial interpretations of ...
متن کامل