Interplay of flg22-induced defence responses and nodulation in Lotus japonicus

نویسندگان

  • Miguel Lopez-Gomez
  • Niels Sandal
  • Jens Stougaard
  • Thomas Boller
چکیده

In this study the interplay between the symbiotic and defence signalling pathways in Lotus japonicus was investigated by comparing the responses to Mesorhizobium loti, the symbiotic partner of L. japonicus, and the elicitor flg22, a conserved peptide motif present in flagellar protein of a wide range of bacteria. It was found that defence and symbiotic pathways overlap in the interaction between L. japonicus and M. loti since similar responses were induced by the mutualistic bacteria and flg22. However, purified flagellin from M. loti did not induce any response in L. japonicus, which suggests the production of other elicitors by the symbiotic bacteria. Defence responses induced by flg22 caused inhibition of rhizobial infection and delay in nodule organogenesis, as demonstrated by the negative effect of flg22 in the formation of spontaneous nodules in the snf1 L. japonicus mutant, and the inhibition of NSP1 and NSP2 genes. This indicates the antagonistic effect of the defence pathway on the nodule formation in the initial rhizobium-legume interaction. However, the fact that flg22 did not affect the formation of new nodules once the symbiosis was established indicates that after the colonization of the host plant by the symbiotic partner, the symbiotic pathway has prevalence over the defensive response. This result is also supported by the down-regulation of the expression levels of the flg22 receptor FLS2 in the nodular tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus–Rhizobium sp. NGR234 interaction

Lotus japonicus, a model legume, develops an efficient, nitrogen-fixing symbiosis with Mesorhizobium loti that promotes plant growth. Lotus japonicus also forms functional nodules with Rhizobium sp. NGR234 and R. etli. Yet, in a plant defence-like reaction, nodules induced by R. etli quickly degenerate, thus limiting plant growth. In contrast, nodules containing NGR234 are long-lasting. It was ...

متن کامل

The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus.

The purB and purH mutants of Mesorhizobium loti exhibited purine auxotrophy and nodulation deficiency on Lotus japonicus. In the presence of adenine, only the purH mutant induced nodule formation and the purB mutant produced few infection threads, suggesting that 5-aminoimidazole-4-carboxamide ribonucleotide biosynthesis catalyzed by PurB is required for the establishment of symbiosis.

متن کامل

Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica

Lotus japonicus genes responsive to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica were isolated by using the suppression subtractive hybridization (SSH) strategy. O. aegyptiaca and S. hermonthica parasitism specifically induced the expression of genes involved in jasmonic acid (JA) biosynthesis and phytoalexin biosynthesis, respectivel...

متن کامل

Shoot-applied MeJA suppresses root nodulation in Lotus japonicus.

To maintain a symbiotic balance, leguminous plants have a systemic regulatory system called autoregulation of nodulation (AUT). Since AUT is schematically similar to systemic resistance found in plant-pathogen interactions, we examined the effects of methyl jasmonate (MeJA) or methyl salicylate (MeSA) on nodulation in Lotus japonicus. Shoot-applied MeJA strongly suppressed nodulation in the wil...

متن کامل

The deubiquitinating enzyme AMSH1 is required for rhizobial infection and nodule organogenesis in Lotus japonicus.

Legume-rhizobium symbiosis contributes large quantities of fixed nitrogen to both agricultural and natural ecosystems. This global impact and the selective interaction between rhizobia and legumes culminating in development of functional root nodules have prompted detailed studies of the underlying mechanisms. We performed a screen for aberrant nodulation phenotypes using the Lotus japonicus LO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2012