Feature Selection in Mixture-Based Clustering
نویسندگان
چکیده
There exist many approaches to clustering, but the important issue of feature selection, i.e., selecting the data attributes that are relevant for clustering, is rarely addressed. Feature selection for clustering is difficult due to the absence of class labels. We propose two approaches to feature selection in the context of Gaussian mixture-based clustering. In the first one, instead of making hard selections, we estimate feature saliencies. An expectation-maximization (EM) algorithm is derived for this task. The second approach extends Koller and Sahami’s mutual-informationbased feature relevance criterion to the unsupervised case. Feature selection is then carried out by a backward search scheme. This scheme can be classified as a “wrapper”, since it wraps mixture estimation in an outer layer that performs feature selection. Experimental results on synthetic and real data show that both methods have promising performance.
منابع مشابه
Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملVariable selection for clustering with Gaussian mixture models: state of the art
The mixture models have become widely used in clustering, given its probabilistic framework in which its based, however, for modern databases that are characterized by their large size, these models behave disappointingly in setting out the model, making essential the selection of relevant variables for this type of clustering. After recalling the basics of clustering based on a model, this art...
متن کاملPartitioning Features for Model-based Clustering using Reversible Jump MCMC Technique
In many cluster analysis applications, data can be composed of a number of feature subsets where each is represented by a number of diverse mixture model-based clusters. However, in most feature selection algorithms, this kind of cluster structure has been less interesting because they accounted for discovery of a single informative feature subset for clustering. In this study, we attempt to re...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کامل