HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans
نویسندگان
چکیده
Autophagy is an evolutionarily conserved intracellular system that maintains cellular homeostasis by degrading and recycling damaged cellular components. The transcription factor HLH-30/TFEB-mediated autophagy has been reported to regulate tolerance to bacterial infection, but less is known about the bona fide bacterial effector that activates HLH-30 and autophagy. Here, we reveal that bacterial membrane pore-forming toxin (PFT) induces autophagy in an HLH-30-dependent manner in Caenorhabditis elegans. Moreover, autophagy controls the susceptibility of animals to PFT toxicity through xenophagic degradation of PFT and repair of membrane-pore cell-autonomously in the PFT-targeted intestinal cells in C. elegans. These results demonstrate that autophagic pathways and autophagy are induced partly at the transcriptional level through HLH-30 activation and are required to protect metazoan upon PFT intoxication. Together, our data show a new and powerful connection between HLH-30-mediated autophagy and epithelium intrinsic cellular defense against the single most common mode of bacterial attack in vivo.
منابع مشابه
Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes.
Animal host defense against infection requires the expression of defense genes at the right place and the right time. Understanding such tight control of host defense requires the elucidation of the transcription factors involved. By using an unbiased approach in the model Caenorhabditis elegans, we discovered that HLH-30 (known as TFEB in mammals) is a key transcription factor for host defense...
متن کاملIntracellular Trafficking and Persistence of Acinetobacter baumannii Requires Transcription Factor EB
Acinetobacter baumannii is a significant human pathogen associated with hospital-acquired infections. While adhesion, an initial and important step in A. baumannii infection, is well characterized, the intracellular trafficking of this pathogen inside host cells remains poorly studied. Here, we demonstrate that transcription factor EB (TFEB) is activated after A. baumannii infection of human lu...
متن کاملGenome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development.
The mechanisms that coordinate the regulation of autophagy with developmental signaling during multicellular organism development remain largely unknown. Here, we show that impaired function of ribosomal protein RPL-43 causes an accumulation of SQST-1 aggregates in the larval intestine, which are removed upon autophagy induction. Using this model to screen for autophagy regulators, we identify ...
متن کاملWWP-1 Is a Novel Modulator of the DAF-2 Insulin-Like Signaling Network Involved in Pore-Forming Toxin Cellular Defenses in Caenorhabditis elegans
Pore-forming toxins (PFTs) are the single largest class of bacterial virulence factors. The DAF-2 insulin/insulin-like growth factor-1 signaling pathway, which regulates lifespan and stress resistance in Caenorhabditis elegans, is known to mutate to resistance to pathogenic bacteria. However, its role in responses against bacterial toxins and PFTs is as yet unexplored. Here we reveal that reduc...
متن کاملEvaluating cytotoxic effects of recombinant fragaceatoxin C pore forming toxin against AML cell lines
Objective(s): Current therapeutic strategies for cancer are associated with side effects and lack of specificity in treatments. Biological therapies including monoclonal antibodies and immune effectors have been the subject of multiple research projects. Pore-forming proteins may become the other biological strategy to overcome the problems associated with current treatments. But detailed mecha...
متن کامل