Differential slow inactivation and use-dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4+ and IB4- DRG neurons.
نویسندگان
چکیده
Nociceptive dorsal root ganglion (DRG) neurons can be classified into nonpeptidergic IB(4)(+) and peptidergic IB(4)(-) subtypes, which terminate in different layers in dorsal horn and transmit pain along different ascending pathways, and display different firing properties. Voltage-gated, tetrodotoxin-resistant (TTX-R) Na(v)1.8 channels are expressed in both IB(4)(+) and IB(4)(-) cells and produce most of the current underlying the depolarizing phase of action potential (AP). Slow inactivation of TTX-R channels has been shown to regulate repetitive DRG neuron firing behavior. We show in this study that use-dependent reduction of Na(v)1.8 current in IB(4)(+) neurons is significantly stronger than that in IB(4)(-) neurons, although voltage dependency of activation and steady-state inactivation are not different. The time constant for entry of Na(v)1.8 into slow inactivation in IB(4)(+) neurons is significantly faster and more Na(v)1.8 enter the slow inactivation state than in IB(4)(-) neurons. In addition, recovery from slow inactivation of Na(v)1.8 in IB(4)(+) neurons is slower than that in IB(4)(-) neurons. Using current-clamp recording, we demonstrate a significantly higher current threshold for generation of APs and a longer latency to onset of firing in IB(4)(+), compared with those of IB(4)(-) neurons. In response to a ramp stimulus, IB(4)(+) neurons produce fewer APs and display stronger adaptation, with a faster decline of AP peak than IB(4)(-) neurons. Our data suggest that differential use-dependent reduction of Na(v)1.8 current in these two DRG subpopulations, which results from their different rate of entry into and recovery from the slow inactivation state, contributes to functional differences between these two neuronal populations.
منابع مشابه
Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression.
Binding to isolectin-B4 (IB4) and expression of tyrosine kinase A (trkA) (the high-affinity NGF receptor) have been used to define two different subgroups of nociceptive small dorsal root ganglion (DRG) neurons. We previously showed that only nociceptors have high trkA levels. However, information about sensory and electrophysiological properties in vivo of single identified IB4-binding neurons...
متن کاملA-type voltage-gated K+ currents influence firing properties of isolectin B4-positive but not isolectin B4-negative primary sensory neurons.
Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between is...
متن کاملHuman Na(v)1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons.
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics...
متن کاملCalmodulin regulates current density and frequency-dependent inhibition of sodium channel Nav1.8 in DRG neurons.
Sodium channel Nav1.8 produces a slowly inactivating, tetrodotoxin-resistant current, characterized by recovery from inactivation with fast and slow components, and contributes a substantial fraction of the current underlying the depolarizing phase of the action potential of dorsal root ganglion (DRG) neurons. Nav1.8 C-terminus carries a conserved calmodulin-binding isoleucine-glutamine (IQ) mo...
متن کاملTwo TTX-resistant Na+ currents in mouse colonic dorsal root ganglia neurons and their role in colitis-induced hyperexcitability.
The composition of Na+ currents in dorsal root ganglia (DRG) neurons depends on their neuronal phenotype and innervation target. Two TTX-resistant (TTX-R) Na+ currents [voltage-gated Na channels (Nav)] have been described in small DRG neurons; one with slow inactivation kinetics (Nav1.8) and the other with persistent kinetics (Nav1.9), and their modulation has been implicated in inflammatory pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 97 2 شماره
صفحات -
تاریخ انتشار 2007