Selective inhibition of ADAM12 catalytic activity through engineering of tissue inhibitor of metalloproteinase 2 (TIMP-2).

نویسندگان

  • Marie Kveiborg
  • Jonas Jacobsen
  • Meng-Huee Lee
  • Hideaki Nagase
  • Ulla M Wewer
  • Gillian Murphy
چکیده

The disintegrin and metalloprotease ADAM12 has important functions in normal physiology as well as in diseases, such as cancer. Little is known about how ADAM12 confers its pro-tumorigenic effect; however, its proteolytic capacity is probably a key component. Thus selective inhibition of ADAM12 activity may be of great value therapeutically and as an investigative tool to elucidate its mechanisms of action. We have previously reported the inhibitory profile of TIMPs (tissue inhibitor of metalloproteinases) against ADAM12, demonstrating in addition to TIMP-3, a unique ADAM-inhibitory activity of TIMP-2. These findings strongly suggest that it is feasible to design a TIMP mutant selectively inhibiting ADAM12. With this purpose, we characterized the molecular determinants of the ADAM12-TIMP complex formation as compared with known molecular requirements for TIMP-mediated inhibition of ADAM17/TACE (tumour necrosis factor alpha-converting enzyme). Kinetic analysis using a fluorescent peptide substrate demonstrated that the molecular interactions of N-TIMPs (N-terminal domains of TIMPs) with ADAM12 and TACE are for the most part comparable, yet revealed strikingly unique features of TIMP-mediated ADAM12 inhibition. Intriguingly, we found that removal of the AB-loop in N-TIMP-2, which is known to impair its interaction with TACE, resulted in increased affinity to ADAM12. Importantly, using a cell-based epidermal growth factor-shedding assay, we demonstrated for the first time an inhibitory activity of TIMPs against the transmembrane ADAM12-L (full-length ADAM12), verifying the distinctive inhibitory abilities of N-TIMP-2 and engineered N-TIMP-2 mutants in a cellular environment. Taken together, our findings support the idea that a distinctive ADAM12 inhibitor with future therapeutic potential can be designed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic interdomain interactions contribute to the inhibition of matrix metalloproteinases by tissue inhibitors of metalloproteinases.

Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and...

متن کامل

Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis.

Tissue inhibitors of metalloproteinases (TIMPs) are a family of closely related secreted proteins that limit matrix metalloproteinase (MMP) activity and also have direct effects on cell growth. We used the highly efficient adenoviral delivery system to overexpress individual TIMPs from the cytomegalovirus immediate early promoter in rat aortic smooth muscle cells. Overexpression of TIMP-1, -2, ...

متن کامل

Cell Migration through Increased Expression of RECK Tissue Inhibitors of Metalloproteinase 2 Inhibits Endothelial

The antiangiogenic function of the tissue inhibitors of metalloproteinases (TIMPs) has been attributed to their matrix metalloproteinase inhibitory activity. Here we demonstrate that TIMP-1 but not Ala TIMP-1 inhibits both basal and vascular endothelial growth factor (VEGF)-stimulated migration of human microvascular endothelial cells (hMVECs), suggesting that this effect is dependent on direct...

متن کامل

Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK.

The antiangiogenic function of the tissue inhibitors of metalloproteinases (TIMPs) has been attributed to their matrix metalloproteinase inhibitory activity. Here we demonstrate that TIMP-1 but not Ala+TIMP-1 inhibits both basal and vascular endothelial growth factor (VEGF)-stimulated migration of human microvascular endothelial cells (hMVECs), suggesting that this effect is dependent on direct...

متن کامل

Differential Regulation of Membrane Type 1-Matrix Metalloproteinase Activity by ERK 1/2- and p38 MAPK-modulated Tissue Inhibitor of Metalloproteinases 2 Expression Controls Transforming Growth Factor- 1-induced Pericellular Collagenolysis*

Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP14), and tissue inhibitor of metalloproteinases-2 (TIMP2). Because transforming growth factor1 (TGF1) promotes tumor invasion in advanced sq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 430 1  شماره 

صفحات  -

تاریخ انتشار 2010