Advances in SAW Gas Sensors Based on the Condensate-Adsorption Effect
نویسندگان
چکیده
A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.
منابع مشابه
Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption
A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introd...
متن کاملCouple Stress Effect on Micro/Nanocantilever-based Capacitive Gas Sensor
Micro/nanocantilevers have been employed as sensors in many applications including chemical and biosensing. Due to their high sensitivity and potential for scalability, miniature sensing systems are in wide use and will likely become more prevalent in micro/nano-electromechanical systems (M-NEMSs). This paper is mainly focused on the use of sensing systems that employ micro/nano-size cantilever...
متن کاملPositive Coupling Effect in Gas Condensate Flow Capillary Number Versus Weber Number
Positive coupling effect in gas condensate reservoirs is assessed through a pure theoretical approach. A combination of linear stability analysis and long bubble approximation is applied to describe gas condensate coupled flow and relative permeability, thereof. The role of capillary number in gas condensate flow is clearly expressed through closed formula for relative permeability. While the m...
متن کاملModeling Critical Flow through Choke for a Gas-condensate Reservoir Based on Drill Stem Test Data
Gas-condensate reservoirs contain hydrocarbon fluids with characteristics between oil and gas reservoirs and a high gas-liquid ratio. Due to the large gas-liquid ratio, wellhead choke calculations using the empirical equations such as Gilbert may contain considerable error. In this study, using drill stem test (DST) data of a gas-condensate reservoir, coefficients of Gilbert equation was modifi...
متن کاملEffect of Salinity, pH, and Temperature on Stability of Gas Condensate in Water Emulsions Using Different Surfactants
Light hydrocarbons in water emulsions are formed in many gas refinery wastewaters, and its stability depends on some parameters such as temperature, pH and salinity. In this study, different surfactants have been used to prepare gas condensates in water emulsion along with four surfactant kinds namely, Span 80, Tween 80, CTAB, SDS and Span 80 and Tween 80 mixture. For this purpose,...
متن کامل