Music Genre Classification Using MIDI and Audio Features

نویسندگان

  • Zehra Cataltepe
  • Yusuf Yaslan
  • Abdullah Sonmez
چکیده

We report our findings on using MIDI files and audio features from MIDI, separately and combined together, for MIDI music genre classification. We use McKay and Fujinaga’s 3-root and 9-leaf genre data set. In order to compute distances between MIDI pieces, we use normalized compression distance (NCD). NCD uses the compressed length of a string as an approximation to its Kolmogorov complexity and has previously been used for music genre and composer clustering. We convert the MIDI pieces to audio and then use the audio features to train different classifiers. MIDI and audio from MIDI classifiers alone achieve much smaller accuracies than those reported by McKay and Fujinaga who used not NCD but a number of domain-based MIDI features for their classification. Combining MIDI and audio from MIDI classifiers improves accuracy and gets closer to, but still worse, accuracies than McKay and Fujinaga’s. The best root genre accuracies achieved using MIDI, audio, and combination of them are 0.75, 0.86, and 0.93, respectively, compared to 0.98 of McKay and Fujinaga. Successful classifier combination requires diversity of the base classifiers. We achieve diversity through using certain number of seconds of the MIDI file, different sample rates and sizes for the audio file, and different classification algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mirex 2008 Audio Music Classification Using a Combination of Spectral, Timbral, Rhythmic, Temporal and Symbolic Features

The novel approach of combining audio and symbolic features for music classification from audio enhanced previous audio-only based results in MIREX 2007. We extended the approach by including temporal audio features, enhancing the polyphonic audio to MIDI transcription system and including an extended set of symbolic features. Recent research in music genre classification hints at a glass ceili...

متن کامل

Mirex 2009 a Multi-feature-set Multi-classifier Ensemble Approach for Audio Music Classification

The approach of combining a multitude of audio features and also symbolic features (through transcription of audio to MIDI) for music classification proved useful, as shown previously. We extended the system submitted to MIREX 2008 by including temporal audio features, adding another audio analysis algorithm based on finding templates on music, enhancing the polyphonic audio to MIDI transcripti...

متن کامل

Automatic Genre Classification as a Study of the Viability of High-Level Features for Music Classification

This paper examines the potential of high-level features extracted from symbolic musical representations in regards to musical classification. Twenty features are implemented and tested by using them to classify 225 MIDI files by genre. This system differs from previous automatic genre classification systems, which have focused on low-level features extracted from audio data. Files are classifi...

متن کامل

MIDI Music Genre Classification by Invariant Features

MIDI music genre classification methods are largely based on generic text classification techniques. We attempt to leverage music domain knowledge in order to improve classification results. We combine techniques of selection and extraction of musically invariant features with classification using compression distance similarity metric, which is an approximation of the theoretical, yet computat...

متن کامل

شناسایی خودکار سبک موسیقی

Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007