Boundedness of Littlewood-Paley Operators Associated with Gauss Measures
نویسندگان
چکیده
Modeled on the Gauss measure, the authors introduce the locally doubling measure metric space X, d, μ ρ, which means that the set X is endowed with a metric d and a locally doubling regular Borel measure μ satisfying doubling and reverse doubling conditions on admissible balls defined via the metric d and certain admissible function ρ. The authors then construct an approximation of the identity on X, d, μ ρ, which further induces a Calderón reproducing formula in L X for p ∈ 1,∞ . Using this Calderón reproducing formula and a locally variant of the vector-valued singular integral theory, the authors characterize the space L X for p ∈ 1,∞ in terms of the Littlewood-Paley g-function which is defined via the constructed approximation of the identity. Moreover, the authors also establish the Fefferman-Stein vector-valued maximal inequality for the local Hardy-Littlewood maximal function on X, d, μ ρ. All results in this paper can apply to various settings including the Gauss measure metric spaces with certain admissible functions related to the Ornstein-Uhlenbeck operator, and Euclidean spaces and nilpotent Lie groups of polynomial growth with certain admissible functions related to Schrödinger operators.
منابع مشابه
Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
The aim of this paper is to establish the vector-valued inequalities for Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g∗μ-functions, and their commutators on the Herz-Morrey spaces with variable exponentMK̇ p,q(·)(R n). By applying the properties of Lp(·)(Rn) spaces and the vector-valued inequalities for Littlewood-Paley operators and their...
متن کاملLittlewood-Paley Operators on Morrey Spaces with Variable Exponent
By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.
متن کاملSome recent works on multi-parameter Hardy space theory and discrete Littlewood-Paley Analysis
The main purpose of this paper is to briefly review the earlier works of multiparameter Hardy space theory and boundedness of singular integral operators on such spaces defined on product of Euclidean spaces, and to describe some recent developments in this direction. These recent works include discrete multiparameter Calderón reproducing formulas and Littlewood-Paley theory in the framework of...
متن کاملEndpoint boundedness for multilinear integral operators of some sublinear operators on Herz and Herz type Hardy spaces
The purpose of this paper is to study the endpoint boundedness properties of some multilinear operators related to certain integral operators on Herz and Herz type Hardy Spaces. The operators include Littlewood-Paley operator and Marcinkiewicz operator.
متن کاملACTA UNIVERSITATIS APULENSIS No 19/2009 BOUNDEDNESS FOR MULTILINEAR COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR ON HARDY AND HERZ-HARDY SPACES
In this paper, the (H ~b , L p) and (HK̇ q,~b , K̇ q ) type boundedness for the multilinear commutator associated with the Littlewood-paley operator are obtained.
متن کامل