Tensor-based Identification of the Structure of Block-Oriented Nonlinear Systems
نویسندگان
چکیده
∗ GIPSA-Lab, System Control Department, CNRS, 961 rue de la Houille Blanche, B.P. 4638402 Saint Martin d’Hères, France (e-mail: [email protected]) ∗∗ Laboratoire I3S, University of Nice Sophia Antipolis, CNRS, Les AlgorithmesBât. Euclide B, 2000 Route des lucioles, B.P. 121 06903 Sophia Antipolis Cedex, France, (Phone:+33 4 92 94 27 36, Fax: +33 4 92 94 28 96, e-mail: [email protected])
منابع مشابه
Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملModeling Parallel Wiener-Hammerstein Systems Using Tensor Decomposition of Volterra Kernels
Providing flexibility and user-interpretability in nonlinear system identification can be achieved by means of block-oriented methods. One of such block-oriented system structures is the parallel WienerHammerstein system, which is a sum of Wiener-Hammerstein branches, consisting of static nonlinearities sandwiched between linear dynamical blocks. Parallel Wiener-Hammerstein models have more des...
متن کاملA Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems
This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...
متن کاملModeling of Nonlinear Systems with Friction Structure Using Multivariable Taylor Series Expansion
The major aim of this article is modeling of nonlinear systems with friction structure that, thismethod is essentially extended based on taylore expansion polynomial. So in this study, thetaylore expansion was extended in the generalized form for the differential equations of the statespaceform. The proposed structure is based on multi independent variables taylore extended.According to the pro...
متن کاملIdentification of parallel Wiener-Hammerstein systems with a decoupled static nonlinearity ?
Block-oriented models are often used to model a nonlinear system. This paper presents an identification method for parallel Wiener-Hammerstein systems, where the obtained model has a decoupled static nonlinear block. This decoupled nature makes the interpretation of the obtained model more easy. First a coupled parallel Wiener-Hammerstein model is estimated. Next, the static nonlinearity is dec...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کامل