Plasma-assisted ignition and deflagration-to-detonation transition.
نویسندگان
چکیده
Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.
منابع مشابه
Plasma-assisted combustion*
This paper presents an overview of experimental and numerical investigations of the nonequilibrium cold plasma generated under high overvoltage and further usage of this plasma for plasma-assisted combustion. Here, two different types of the discharge are considered: a streamer under high pressure and the so-called fast ionization wave (FIW) at low pressure. The comprehensive experimental inves...
متن کاملCharacterization of a Corona Discharge Initiator Using Detonation Tube Impulse Measurements
Experiments were carried out to determine the effectiveness of a transient plasma, i.e, corona discharge, to initiate a detonation in a short tube. A high-voltage pulse generator used a pseudo-spark switch to discharge a capacitor through a transformer connected to electrodes in the combustion initiator section. The resulting voltage pulse (90 kV for 50 ns) produced a plasma discharge consistin...
متن کاملLocal Ignition in Carbon/Oxygen White Dwarfs – I: One-zone Ignition and Spherical Shock Ignition of Detonations
The details of ignition of Type Ia supernovae remain fuzzy, despite the importance of this input for any large-scale model of the final explosion. Here, we begin a process of understanding the ignition of these hotspots by examining the burning of one zone of material, and then investigate the ignition of a detonation due to rapid heating at single point. We numerically measure the ignition del...
متن کاملPhysical Mechanisms of DDT in an Array of PBX 9501 Cylinders Initiation Mechanisms of DDT
The Deflagration to Detonation Transition (DDT) in large arrays (100s) of explosive devices is investigated using large-scale computer simulations running the Uintah Computational Framework. Our particular interest is understanding the fundamental physical mechanisms by which convective deflagration of cylindrical PBX 9501 devices can transition to a fully-developed detonation in transportation...
متن کاملFinal Report on Contract F61775-00-We 054 Submitted to the European Office of Aerospace Research and Development (EOARD) Deflagration to Detonation Transition Processes in Pulsed Detonation Engines
The aim of the work performed in the current contract is to assess the accuracy of potential modelling techniques applied to the formation of Deflagration to Detonation (DDT) kernels in mixtures of hydrocarbons with air. The application area is of direct relevance to the transition to detonation in pulsed detonation engines featuring premixed gases. The latter technology is currently pursued at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 370 1960 شماره
صفحات -
تاریخ انتشار 2012