Using spectral low rank preconditioners for large electromagnetic calculations
نویسندگان
چکیده
For solving large dense complex linear systems that arise in electromagnetic calculations, we perform experiments using a general purpose spectral low rank update preconditioner in the context of the GMRES method preconditioned by an approximate inverse preconditioner. The goal of the spectral preconditioner is to improve the convergence properties by shifting by one the smallest eigenvalues of the original preconditioned system. Numerical experiments on parallel distributed memory computers are presented to illustrate the efficiency of this technique on large and challenging real-life industrial problems. Copyright 2004 John Wiley & Sons, Ltd.
منابع مشابه
Tensor-structured Preconditioners and Approximate Inverse of Elliptic Operators in R
In the present paper we analyse a class of tensor-structured preconditioners for the multidimensional second order elliptic operators in Rd, d ≥ 2. For equations in bounded domain the construction is based on the rank-R tensor-product approximation of the elliptic resolvent BR ≈ (L − λI)−1, where L is the sum of univariate elliptic operators. We prove the explicit estimate on the tensor rank R ...
متن کاملUpdating Constraint Preconditioners for KKT Systems in Quadratic Programming Via Low-Rank Corrections
This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective in this context; ne...
متن کاملTwo-level Hierarchical Basis Preconditioners for Computing Eigenfrequencies of Cavity Resonators with the Finite Element Method
We report on experiments conducted with the implicitly restarted Lanczos algorithm for computing a few of the lowest frequencies of standing electromagnetic waves in resonant cavities with the nite element method. The linear systems that are caused by the shift and invert spectral transformation are solved by means of two-level hierarchical basis preconditioners.
متن کاملRegularized Computation of Approximate Pseudoinverse of Large Matrices Using Low-Rank Tensor Train Decompositions
We propose a new method for low-rank approximation of Moore-Penrose pseudoinverses (MPPs) of large-scale matrices using tensor networks. The computed pseudoinverses can be useful for solving or preconditioning large-scale overdetermined or underdetermined systems of linear equations. The computation is performed efficiently and stably based on the modified alternating least squares (MALS) schem...
متن کاملThe inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems
Although some preconditioners are available for solving dense linear systems, there are still many matrices for which preconditioners are lacking, in particular in cases where the size of the matrix N becomes very large. Examples of preconditioners include ILU preconditioners that sparsify the matrix based on some threshold, algebraic multigrid, and specialized preconditioners, e.g., Calderón a...
متن کامل