Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation
نویسندگان
چکیده
Pulses of arbitrary temporal shape can be generated by spectrally filtering a short pulse. Frequency selective reflectors, such as fiber Bragg gratings, can be designed to obtain the desired pulse shape. The required distribution of the refractive index modulation, amplitude and phase, can be calculated using inverse scattering techniques. For weak gratings, under the Born approximation, the impulse response of the grating is directly related to the refractive index distribution. The specified refractive index can be photo-written in an optical fiber using standard phase-mask scanning techniques. Two Bragg gratings were specially designed to shape a train of gaussian pulses into antisymmetric Hermite-Gauss pulses. The first grating had a length of 40 mm producing a spectral response over 0.05 nm (peak-to-peak). This grating was interrogated by 100 ps pulses produced by a CW tunable laser with an external modulator. The second grating (L = 10 mm and ∆λ = 0.18 nm) was interrogated with a mode-locked fiber laser (7 ps). The pulses were characterized in the frequency and time domain. The antisymmetric pulses were propagated in standard fiber to verify the presence of the phase shift between the two lobes. These Hermite-Gauss pulses could be used to study antisymmetric dispersion-managed soliton pulses.
منابع مشابه
Unique Solution of Short Pulse Propagation in Nonlinear Fiber Bragg Grating
In this study, a new numerical method is introduced to obtain the exact shape of output pulse in the chalcogenide fiber Bragg grating (FBG). A Gaussian pulse shape with 173 ps width is used as an input pulse for lunching to a 6.6 mm nonlinear FBG. Because of bistable and hysteresis nature of nonlinear FBG the time sequence of each portion of pulse is affected the shape of output pulse. So we di...
متن کاملAll-Optical TDM Data Demultiplexing at 80 Gb/s With Significant Timing Jitter Tolerance Using a Fiber Bragg Grating Based Rectangular Pulse Switching Technology
We demonstrate the use of fiber Bragg grating based pulse-shaping technology to provide timing jitter tolerant data demultiplexing in an 80 Gb/s all-optical time division multiplexing (OTDM) system. Error-free demultiplexing operation is achieved with 6 ps timing jitter tolerance using superstructured fiber Bragg grating based 1.7 ps soliton to 10 ps rectangular pulse conversion at the switchin...
متن کاملMonolithic fiber-grating and MEMS based devices for controllable ultrafast pulse shaping
A new type of optical pulse shaper for arbitrary waveform generation is demonstrated, based on fiber Bragg grating and micro-electro-mechanical system (MEMS) technologies. This is an on-chip device which is compact, robust, monolithic, and programmable and can be used for a variety of applications such as higher order dispersion compensation in fiber communication links and high-energy pulse am...
متن کاملSimultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings.
We propose an all-fiber method for the generation of ultrafast shaped pulse train bursts from a single pulse based on Fourier Series Developments (FDSs). The implementation of the FSD based filter only requires the use of a very simple non apodized Superimposed Fiber Bragg Grating (S-FBG) for the generation of the Shaped Output Pulse Train Burst (SOPTB). In this approach, the shape, the period ...
متن کاملOptical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings
Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...
متن کامل