Learning user-specific parameters in a multibiometric system
نویسندگان
چکیده
Biometric systems that use a single biometric trait have to contend with noisy data, restricted degrees of freedom, failureto-enroll problems, spoof attacks, and unacceptable error rates. Multibiometric systems that use multiple traits of an individual for authentication, alleviate some of these problems while improving verification performance. We demonstrate that the performance of multibiometric systems can be further improved by learning user-specific parameters. Two types of parameters are considered here. (i) Thresholds that are used to decide if a matching score indicates a genuine user or an impostor, and (ii) weights that are used to indicate the importance of matching scores output by each biometric trait. User-specific thresholds are computed using the cumulative histogram of impostor matching scores corresponding to each user. The user-specific weights associated with each biometric are estimated by searching for that set of weights which minimizes the total verification error. The tests were conducted on a database of 50 users who provided fingerprint, face and hand geometry data, with 10 of these users providing data over a period of two months. We observed that user-specific thresholds improved system performance by ∼ 2%, while user-specific weights improved performance by ∼ 3%.
منابع مشابه
Technical Report: Multibiometric Cryptosystems
Multibiometric systems are being increasingly deployed in many large scale biometric applications (e.g., FBIIAFIS, UIDAI system in India) because they have several advantages such as lower error rates and larger population coverage compared to unibiometric systems. However, multibiometric systems require storage of multiple biometric templates (e.g., fingerprint, iris, and face) for each user, ...
متن کاملMultibiometric Systems Based Verification Technique
Multibiometric systems represent the fusion of two or more unimodal biometric systems. Such systems are expected to be more reliable due to the presence of multiple independent pieces of evidence. Since security is one of the important concerns of twenty first century, multibiometric systems can play an important role in ensuring security. In this paper, a multibiometric system is proposed for ...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملLearning-Based Energy Management System for Scheduling of Appliances inside Smart Homes
Improper designs of the demand response programs can lead to numerous problems such as customer dissatisfaction and lower participation in these programs. In this paper, a home energy management system is designed which schedules appliances of smart homes based on the user’s specific behavior to address these issues. Two types of demand response programs are proposed for each house which are sh...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کامل