Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans.
نویسندگان
چکیده
Fludioxonil is employed as an agricultural fungicide to control plant-pathogenic fungi such as Botrytis cinerea. Cryptococcus neoformans is a basidiomycetous human fungal pathogen that causes fatal disease in immunocompromised hosts. This paper demonstrates that three different signalling cascades regulate sensitivity of C. neoformans to fludioxonil. Fludioxonil inhibited growth of the serotype A sequence reference strain H99 but not that of the sequenced serotype D strain JEC21. In the drug-sensitive wild-type strain, fludioxonil exposure activated the Hog1 osmosensing pathway, and hog1Delta mutations conferred fludioxonil resistance. Fludioxonil treatment caused cell growth inhibition following cell swelling and cytokinesis defects in the sensitive wild-type but not in a hog1Delta mutant strain, suggesting that Hog1 activation results in morphological cellular defects. Fludioxonil exerted a fungistatic effect on the wild-type strain H99, but exhibited fungicidal activity against calcineurin mutant strains, indicating that the calcineurin pathway contributes to drug resistance in this fungus. Combination of fludioxonil and the calcineurin inhibitor FK506 synergistically inhibited C. neoformans growth. mpk1Delta MAPK mutant strains exhibited fludioxonil hypersensitivity, indicating that this pathway also contributes to drug resistance. These studies provide evidence that the broad-spectrum antifungal drug fludioxonil exerts its action via activation of the Hog1 MAPK pathway and provide insight into novel targets for synergistic antifungal drug combinations.
منابع مشابه
A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans.
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress resp...
متن کاملSsk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans.
The stress-activated p38/Hog1 mitogen-activated protein kinase (MAPK) pathway is structurally conserved in many diverse organisms, including fungi and mammals, and modulates myriad cellular functions. The Hog1 pathway is uniquely specialized to control differentiation and virulence factors in a majority of clinical Cryptococcus neoformans serotype A and D strains. Here, we identified and charac...
متن کاملHrk1 Plays Both Hog1-Dependent and -Independent Roles in Controlling Stress Response and Antifungal Drug Resistance in Cryptococcus neoformans
The HOG (High Osmolarity Glycerol response) pathway plays a central role in controlling stress response, ergosterol biosynthesis, virulence factor production, and differentiation of Cryptococcus neoformans, which causes fatal fungal meningoencephalitis. Recent transcriptome analysis of the HOG pathway discovered a Hog1-regulated gene (CNAG_00130.2), encoding a putative protein kinase orthologou...
متن کاملThe Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans
Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including...
متن کاملRole of Cryptococcus neoformans Rho1 GTPases in the PKC1 signaling pathway in response to thermal stress.
To initiate and establish infection in mammals, the opportunistic fungal pathogen Cryptococcus neoformans must survive and thrive upon subjection to host temperature. Primary maintenance of cell integrity is controlled through the protein kinase C1 (PKC1) signaling pathway, which is regulated by a Rho1 GTPase in Saccharomyces cerevisiae. We identified three C. neoformans Rho GTPases, Rho1, Rho1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 152 Pt 3 شماره
صفحات -
تاریخ انتشار 2006