Algebraic and Arithmetic Lattices . Part I 1 Robert Milewski Warsaw University

نویسنده

  • Robert Milewski
چکیده

The scheme LambdaCD deals with a non empty set A, a unary functor F yielding a set, a unary functor G yielding a set, and a unary predicate P, and states that: There exists a function f such that dom f = A and for every element x of A holds if P[x], then f(x) = F(x) and if not P[x], then f(x) = G(x) for all values of the parameters. The following propositions are true: (1) Let L be a non empty reflexive transitive relational structure and x, y be elements of L. If x ¬ y, then compactbelow(x) ⊆ compactbelow(y). (2) For every non empty reflexive relational structure L and for every element x of L holds compactbelow(x) is a subset of CompactSublatt(L). (3) For every relational structure L and for every relational substructure S of L holds every subset of S is a subset of L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic and Arithmetic Lattices . Part I 1

(1) Let L be a non empty reflexive transitive relational structure and x, y be elements of L. If x ≤ y, then compactbelow(x)⊆ compactbelow(y). (2) For every non empty reflexive relational structure L and for every element x of L holds compactbelow(x) is a subset of CompactSublatt(L). (3) For every relational structure L and for every relational substructure S of L holds every subset of S is a s...

متن کامل

Algebraic and Arithmetic Lattices . Part II 1

The following propositions are true: (1) Let R be a relational structure and S be a full relational substructure of R. Then every full relational substructure of S is a full relational substructure of R. (2) Let X, Y , Z be non empty 1-sorted structures, f be a map from X into Y , and g be a map from Y into Z. If f is onto and g is onto, then g · f is onto. (3) For every non empty 1-sorted stru...

متن کامل

Białystok Gauges and Cages . Part II 1 Artur Korniłowicz University of Białystok Robert Milewski University of Białystok

Let m be an even integer. Note that m + 2 is even. Let m be an odd integer. Observe that m + 2 is odd. Let m be a non empty natural number. Observe that 2 is even. Let n be an even natural number and let m be a non empty natural number. Note that n is even. We now state several propositions: (2) If r 6= 0, then 1 r · ri+1 = r. (3) If r s is an integer and s 6= 0, then −⌊ r s ⌋ = ⌊ s ⌋ + 1. (4) ...

متن کامل

Algebraic Properties of Intuitionistic Fuzzy Residuated Lattices

In this paper, we investigate more relations between the symmetric residuated lattices $L$ with their corresponding intuitionistic fuzzy residuated lattice $tilde{L}$. It is shown that some algebraic structures of $L$ such as Heyting algebra, Glivenko residuated lattice and strict residuated lattice are preserved for $tilde{L}$. Examples are given for those structures that do not remain the sam...

متن کامل

Białystok Bases of Continuous Lattices 1 Robert Milewski University of Białystok

The following proposition is true (1) For every non empty poset L and for every element x of L holds compactbelow(x) = ↓x ∩ the carrier of CompactSublatt(L). Let L be a non empty reflexive transitive relational structure and let X be a subset of 〈Ids(L),⊆〉. Then ⋃ X is a subset of L. The following propositions are true: (2) For every non empty relational structure L and for all subsets X, Y of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007