Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Polynomial Transforms Based on Induction
نویسندگان
چکیده
A polynomial transform is the multiplication of an input vector x ∈ C by a matrix Pb;α ∈ Cn×n; whose ðk;lÞth element is defined as plðαkÞ for polynomials plðxÞ ∈ C1⁄2x from a list b 1⁄4 fp0ðxÞ; : : : ; pn−1ðxÞg and sample points αk ∈ C from a list α 1⁄4 fα0; : : : ;αn−1g. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. An important example includes the discrete Fourier transform. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel Oðn log nÞ general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4.
منابع مشابه
Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs
This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebra...
متن کاملAlgebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Real DFTs
In this paper we systematically derive a large class of fast general-radix algorithms for various types of real discrete Fourier transforms (real DFTs) including the discrete Hartley transform (DHT) based on the algebraic signal processing theory. This means that instead of manipulating the transform definition, we derive algorithms by manipulating the polynomial algebras underlying the transfo...
متن کاملDFT and FFT: An Algebraic View
In infinite, or non-periodic, discrete-time signal processing, there is a strong connection between the z-transform, Laurent series, convolution, and the discrete-time Fourier transform (DTFT) [10]. As one may expect, a similar connection exists for the DFT but bears surprises. Namely, it turns out that the proper framework for the DFT requires modulo operations of polynomials, which means work...
متن کاملCooley-Tukey FFT like algorithms for the DCT
The Cooley-Tukey FFT algorithm decomposes a discrete Fourier transform (DFT) of size n = km into smaller DFTs of size k and m. In this paper we present a theorem that decomposes a polynomial transform into smaller polynomial transforms, and show that the FFT is obtained as a special case. Then we use this theorem to derive a new class of recursive algorithms for the discrete cosine transforms (...
متن کاملAutomatic generation of fast discrete signal transforms
This paper presents an algorithm that derives fast versions for a broad class of discrete signal transforms symbolically. The class includes but is not limited to the discrete Fourier and the discrete trigonometric transforms. This is achieved by finding fast sparse matrix factorizations for the matrix representations of these transforms. Unlike previous methods, the algorithm is entirely autom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 32 شماره
صفحات -
تاریخ انتشار 2011