Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds

نویسنده

  • Misha Verbitsky
چکیده

A manifold (M, I, J,K) is called hypercomplex if I, J,K are complex structures satisfying quaternionic relations. A quaternionic Hermitian hypercomplex manifold is called HKT (hyperkähler with torsion) if the (2,0)-form Ω associated with the corresponding Sp(n)-structure satisfies ∂Ω = 0. A Hermitian metric ω on a complex manifold is called balanced if d∗ω = 0. We show that balanced HKT metrics are precisely the quaternionic Calabi-Yau metrics defined in terms of the quaternionic Monge-Ampère equation. In particular, a balanced HKT-metric is unique in its cohomology class, and it always exists if the quaternionic Calabi-Yau theorem is true. We investigate the cohomological properties of strong HKT metrics (the quaternionic Hermitian metrics, satisfying, in addition to the HKT condition, the relation ddω = 0), and show that the space of strong HKT metrics is finite-dimensional. Using Howe’s duality for representations of Sp(n), we prove a hyperkähler version of Hodge-Riemann bilinear relations. We use it to show that a manifold admitting a balanced HKT-metric never admits a strong HKT-metric, if dimR M > 12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry

A hypercomplex manifold is a manifold equipped with a triple of complex structures I, J,K satisfying the quaternionic relations. We define a quaternionic analogue of plurisubharmonic functions on hypercomplex manifolds, and interpret these functions geometrically as potentials of HKT (hyperkähler with torsion) metrics, and prove a quaternionic analogue of A.D. Aleksandrov and Chern-Levine-Niren...

متن کامل

Hyperkähler manifolds with torsion, supersymmetry and Hodge theory

Let M be a hypercomplex Hermitian manifold, (M, I) the same manifold considered as a complex Hermitian with a complex structure I induced by the quaternions. The standard linear-algebraic construction produces a canonical nowhere degenerate (2,0)-form Ω on (M, I). It is well known that M is hyperkähler if and only if the form Ω is closed. The M is called HKT (hyperkähler with torsion) if Ω is c...

متن کامل

Stable bundles on hypercomplex surfaces

A hypercomplex manifold is a manifold equipped with three complex structures I, J,K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M . We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)...

متن کامل

Hyperkähler Torsion Structures Invariant by Nilpotent Lie Groups

We study HKT structures on nilpotent Lie groups and on associated nilmanifolds. We exhibit three weak HKT structures on R which are homogeneous with respect to extensions of Heisenberg type Lie groups. The corresponding hypercomplex structures are of a special kind, called abelian. We prove that on any 2-step nilpotent Lie group all invariant HKT structures arise from abelian hypercomplex struc...

متن کامل

Hypercomplex structures on Kähler manifolds

Let (M, I) be a compact Kähler manifold admitting a hypercomplex structure (M, I, J,K). We show that (M, I, J,K) admits a natural HKT-metric. This is used to construct a holomorphic symplectic form on (M, I).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008