Boundary Conditions for Two-Sided Fractional Diffusion
نویسندگان
چکیده
This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive and negative fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann-Liouville and Caputo flux are computed. For Riemann-Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann-Liouville and Caputo fluxes is discussed.
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملHigher order multi-point fractional boundary value problems with integral boundary conditions
In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...
متن کاملGeneralized Boundary Conditions for the Time-Fractional Advection Diffusion Equation
The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملClassical , Nonlocal , and Fractional Diffusion Equations on Bounded Domains
The purpose of this paper is to compare the solutions of one-dimensional boundary value problems corresponding to classical, fractional and nonlocal diffusion on bounded domains. The latter two diffusions are viable alternatives for anomalous diffusion, when Fick’s first law is an inaccurate model. In the case of nonlocal diffusion, a generalization of Fick’s first law in terms of a nonlocal fl...
متن کامل