Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation.

نویسندگان

  • Chenbei Chang
  • Richard M Harland
چکیده

Vertebrate neural induction requires inhibition of bone morphogenetic protein (BMP) signaling in the ectoderm. However, whether inhibition of BMP signaling is sufficient to induce neural tissues in vivo remains controversial. Here we have addressed why inhibition of BMP/Smad1 signaling does not induce neural markers efficiently in Xenopus ventral ectoderm, and show that suppression of both Smad1 and Smad2 signals is sufficient to induce neural markers. Manipulations that inhibit both Smad1 and Smad2 pathways, including a truncated type IIB activin receptor, Smad7 and Ski, induce early neural markers and inhibit epidermal genes in ventral ectoderm; and co-expression of BMP inhibitors with a truncated activin/nodal-specific type IB activin receptor leads to efficient neural induction. Conversely, stimulation of Smad2 signaling in the neural plate at gastrula stages results in inhibition of neural markers, disruption of the neural tube and reduction of head structures, with conversion of neural to neural crest and mesodermal fates. The ability of activated Smad2 to block neural induction declines by the end of gastrulation. Our results indicate that prospective neural cells are poised to respond to Smad2 and Smad1 signals to adopt mesodermal and non-neural ectodermal fates even at gastrula stages, after the conventionally assigned end of mesodermal competence, so that continued suppression of both mesoderm- and epidermis-inducing Smad signals leads to efficient neural induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos.

ARID domain proteins are members of a highly conserved family involved in chromatin remodeling and cell-fate determination. Dril1 is the founding member of the ARID family and is involved in developmental processes in both Drosophila and Caenorhabditis elegans. We describe the first embryological characterization of this gene in chordates. Dril1 mRNA expression is spatiotemporally regulated and...

متن کامل

Characterization of zebrafish smad1, smad2 and smad5: the amino-terminus of Smad1 and Smad5 is required for specific function in the embryo

Members of the TGFbeta superfamily of signalling molecules play important roles in mesendoderm induction and dorsoventral patterning of the vertebrate embryo. We cloned three intracellular mediators of TGFbeta signalling, smad1, 2 and 5, from the zebrafish. The three smad genes are expressed ubiquitously at the onset of gastrulation. The pattern of expression becomes progressively restricted du...

متن کامل

Global Identification of SMAD2 Target Genes Reveals a Role for Multiple Co-regulatory Factors in Zebrafish Early Gastrulas*

Nodal and Smad2/3 signals play pivotal roles in mesendoderm induction and axis determination during late blastulation and early gastrulation in vertebrate embryos. However, Smad2/3 direct target genes during those critical developmental stages have not been systematically identified. Here, through ChIP-chip assay, we show that the promoter/enhancer regions of 679 genes are bound by Smad2 in the...

متن کامل

Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction.

The neural crest is induced by a combination of secreted signals. Although previous models of neural crest induction have proposed a step-wise activation of these signals, the actual spatial and temporal requirement has not been analysed. Through analysing the role of the mesoderm we show for the first time that specification of neural crest requires two temporally and chemically different step...

متن کامل

Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2.

smad genes constitute a family of nine members whose products serve as intracellular mediators of transforming growth factor beta signals. SMAD2, which is a tumor suppressor involved in colorectal and lung cancer, has been shown to induce dorsal mesoderm in Xenopus laevis in response to transforming growth factor beta and activins. The smad2 gene is expressed ubiquitously during murine embryoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 134 21  شماره 

صفحات  -

تاریخ انتشار 2007