Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: methodologies for hierarchical composites.
نویسندگان
چکیده
The introduction of carbon nanotubes (CNTs) modifies bulk polymer properties, depending on intrinsic quality, dispersion, alignment, interfacial chemistry and mechanical properties of the nanofiller. These effects can be exploited to enhance the matrices of conventional microscale fibre-reinforced polymer composites, by using primary reinforcing fibres grafted with CNTs. This paper presents a methodology that combines atomic force microscopy, polarised Raman spectroscopy, and nanoindentation techniques, to study the distribution, alignment and orientation of CNTs in the vicinity of epoxy-embedded micrometre-scale silica fibres, as well as, the resulting local mechanical properties of the matrix. Raman maps of key features in the CNT spectra clearly show the CNT distribution and orientation, including a 'parted' morphology associated with long grafted CNTs. The hardness and indentation modulus of the epoxy matrix were improved locally by 28% and 24%, respectively, due to the reinforcing effects of CNTs. Moreover, a slower stress relaxation was observed in the epoxy region containing CNTs, which may be due to restricted molecular mobility of the matrix. The proposed methodology is likely to be relevant to further studies of nanocomposites and hierarchical composites.
منابع مشابه
Hierarchical Composites with Carbon Nanotube Grafted Fibres
Carbon nanotubes (CNTs) are excellent candidates for a new generation of high-strength, high-stiffness materials due to their low density, high aspect ratio and intrinsically superior mechanical properties. The present study investigates the feasibility of reinforcing conventional fibre/matrix composites by grafting CNTs onto the fibre surface. The approach is to exploit the CNT performance to ...
متن کاملC1nr10497g 4759..4767
The introduction of carbon nanotubes (CNTs) modifies bulk polymer properties, depending on intrinsic quality, dispersion, alignment, interfacial chemistry and mechanical properties of the nanofiller. These effects can be exploited to enhance the matrices of conventional microscale fibrereinforced polymer composites, by using primary reinforcing fibres grafted with CNTs. This paper presents a me...
متن کاملA bridging law and its application to the analysis of toughness of carbon nanotube-reinforced composites and pull-out of fibres grafted with nanotubes
Bridging laws are essential in predicting the mechanical behaviour of conventional short-fibrereinforced composites and the emerging nanofibre-reinforced composites. In this paper, we first review some studies on the toughness of carbon nanotube-reinforced composites that is induced by the pull-out of the nanotubes from the matrix, and on the development of the corresponding bridging laws. A cl...
متن کاملApplying a potential difference to minimise damage to carbon fibres during carbon nanotube grafting by chemical vapour deposition.
The application of an in situ potential difference between carbon fibres and a graphite foil counter electrode (300 V, generating an electric field ca 0.3-0.7 V μm-1), during the chemical vapour deposition synthesis of carbon nanotube (CNT) grafted carbon fibres, significantly improves the uniformity of growth without reducing the tensile properties of the underlying carbon fibres. Grafted CNTs...
متن کاملPredicting Young’s Modulus of Aggregated Carbon Nanotube Reinforced Polymer
Prediction of mechanical properties of carbon nanotube-based composite is one of the important issues which should be addressed reasonably. A proper modeling approach is a multi-scale technique starting from nano scale and lasting to macro scale passing in-between scales of micro and meso. The main goal of this research is to develop a multi-scale modeling approach to extract mechanical propert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 11 شماره
صفحات -
تاریخ انتشار 2011