Distinctive climate signals in reanalysis of global ocean heat content

نویسندگان

  • Magdalena A. Balmaseda
  • Kevin E. Trenberth
  • Erland Källén
چکیده

[1] The elusive nature of the post-2004 upper ocean warming has exposed uncertainties in the ocean’s role in the Earth’s energy budget and transient climate sensitivity. Here we present the time evolution of the global ocean heat content for 1958 through 2009 from a new observationbased reanalysis of the ocean. Volcanic eruptions and El Niño events are identified as sharp cooling events punctuating a long-term ocean warming trend, while heating continues during the recent upper-ocean-warming hiatus, but the heat is absorbed in the deeper ocean. In the last decade, about 30% of the warming has occurred below 700 m, contributing significantly to an acceleration of the warming trend. The warming below 700 m remains even when the Argo observing system is withdrawn although the trends are reduced. Sensitivity experiments illustrate that surface wind variability is largely responsible for the changing ocean heat vertical distribution. Citation: Balmaseda, M. A., K. E. Trenberth, and E. Källén (2013), Distinctive climate signals in reanalysis of global ocean heat content, Geophys. Res. Lett., 40, doi:10.1002/grl.50382.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA)

This paper describes the Simple Ocean Data Assimilation (SODA) reanalysis of ocean climate variability. In the assimilation, a model forecast produced by an ocean general circulation model with an average resolution of 0.25° 0.4° 40 levels is continuously corrected by contemporaneous observations with corrections estimated every 10 days. The basic reanalysis, SODA 1.4.2, spans the 44-yr period ...

متن کامل

Warming of the arctic ice-ocean system is faster than the global average since the 1960s

[1] Model results and observations both indicate warming of the world ocean from 1955 to 2003. Forced by reanalysis data, the model also shows that the warming of the arctic ice–ocean system is faster than the global average since the 1960s; there is a small but widespread increase in heat content of the Arctic Ocean’s waters and a larger increase of latent heat embodied in the ocean’s decreasi...

متن کامل

Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation

sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation" (2010). [1] The sensitivity of upper thermocline properties, and global climate, to tropical cyclone (TC) winds is examined using global ocean and atmosphere general circulation models. We combine seven years of global, satellite‐based TC wind records with a standard surface w...

متن کامل

Earth’s Energy Imbalance

Climate change from increased greenhouse gases arises from a global energy imbalance at the top of the atmosphere (TOA). TOA measurements of radiation from space can track changes over time but lack absolute accuracy. An inventory of energy storage changes shows that over 90% of the imbalance is manifested as a rise in ocean heat content (OHC). Data from the Ocean Reanalysis System, version 4 (...

متن کامل

Evaluation of satellite and reanalysis‐based global net surface energy flux and uncertainty estimates

The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty. A combination of satellite-derived radiative fluxes at the top of atmosphere adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis are used to estimate surface e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013