Simple 3-designs with block size d+1 from PSL(2, 2n) where d|(2n-1)
نویسندگان
چکیده
Let G be the projective special linear group PSL(2, 2), let X be the projective line and B be any subgroup of GF ∗(2n). We give a new infinite family of simple 3-designs by determining the parameter set of (X, G(B0)), where B0 = B ∪ {0}.
منابع مشابه
3-Designs with block size 6 from PSL(2, q) and their large sets
We investigate the existence of 3-designs and uniform large sets of 3-designs with block size 6 admitting PSL(2, q) as an automorphism group. We show the existence of simple 3-(28, 6, 10m) designs for 1 ≤ m ≤ 230. Most of these designs were previously unknown.
متن کاملOn the existence of three dimensional Room frames and Howell cubes
A Howell design of side s and order 2n+2, or more briefly an H(s, 2n+2) isan s× s array in which each cell is either empty or contains an unordered pairof elements from some 2n+2 set V such that (1) every element of V occurs inprecisely one cell of each row and each column, and (2) every unordered pairof elements from V is in at most one cell of the array. It follows immediately...
متن کامل3-Designs from PSL(2, q)
The group PSL(2, q) is 3-homogeneous on the projective line when q is a prime power congruent to 3 modulo 4 and therefore it can be used to construct 3-designs. In this paper, we determine all 3-designs admitting PSL(2, q) with block size not congruent to 0 and 1 modulo p where q = pn.
متن کاملOptimal Collision Security in Double Block Length Hashing with Single Length Key
The idea of double block length hashing is to construct a compression function on 2n bits using a block cipher with an n-bit block size. All optimally secure double length hash functions known in the literature employ a cipher with a key space of double block size, 2n-bit. On the other hand, no optimally secure compression functions built from a cipher with an n-bit key space are known. Our wor...
متن کاملSome Computational Formulas for D-Nِrlund Numbers
and Applied Analysis 3 It follows from 1.11 or 1.12 that t n, k t n − 2, k − 2 − 1 4 n − 2 t n − 2, k , 1.13 and that t n, 0 δn,0 n ∈ N0 : N ∪ {0} , t n, n 1 n ∈ N , t n, k 0 n k odd , t n, k 0 k > n or k < 0 , 1.14 where δm,n denotes the Kronecker symbol. By 1.13 , we have t 2n 1, 1 −1 n 2n ! 42n ( 2n n ) , t 2n 2, 2 −1 n n! 2 n ∈ N0 , 1.15 t 2n 2, 4 −1 n 1 n! 2 ( 1 1 22 1 32 · · · 1 n2 ) n ∈ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 51 شماره
صفحات -
تاریخ انتشار 2011