Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface.
نویسندگان
چکیده
Vapor detection of hydrogen peroxide still remains challenging for conventional sensing techniques, though such vapor detection implies important applications in various practical areas, including locating IEDs. We report herein a new colorimetric sensor system that can detect hydrogen peroxide vapor down to parts per billion level. The sensory materials are based on the cellulose microfibril network of paper towels, which provide a tunable interface for modification with Ti(IV) oxo complexes for binding and reacting with H(2)O(2). The Ti(IV)-peroxide bond thus formed turns the complex from colorless to bright yellow with an absorption maximum around 400 nm. Such complexation-induced color change is exclusively selective for hydrogen peroxide, with no color change observed in the presence of water, oxygen, common organic reagents or other chelating reagents. This paper-based sensor material is disposable and one-time use, representing a cheap, simple approach to detect peroxide vapors. The reported sensor system also proves the technical feasibility of developing enhanced colorimetric sensing using nanofibril materials that will provide plenty of room to enlarge the surface area (by shrinking the fiber size), so as to enhance the surface interaction with gas phase.
منابع مشابه
Amperometric sensing of hydrogen peroxide vapor for security screening
Rapid detection of the hydrogen peroxide precursor of peroxide explosives is required in numerous security screening applications. We describe a highly sensitive and selective amperometric detection of hydrogen peroxide vapor at an agarose-coated Prussian-blue (PB) modified thick-film carbon transducer. The sensor responds rapidly and reversibly to dynamic changes in the level of the peroxide v...
متن کاملA colorimetric sensor array for detection of triacetone triperoxide vapor.
Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detec...
متن کاملOptimizing Colorimetric Assay Based on V2O5 Nanozymes for Sensitive Detection of H2O2 and Glucose
Nanozyme-based chemical sensing is a rapidly emerging field of research. Herein, a simple colorimetric assay for the detection of hydrogen peroxide and glucose based on the peroxidase-like activity of V₂O₅ nanozymes has been established. In this assay, the effects of pH, substrate, nanozyme concentrations and buffer solution have been investigated. It was found that compared with 3,3',5,5'-tetr...
متن کاملPhotonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors
Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of pe...
متن کاملGasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor
A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2011