Intelligent Search Engine Ranking Algorithm inspired by Recommendation Engines
نویسندگان
چکیده
Every step in the evolution of human kind is associated with the inherent quest for knowledge and substantial growth in intelligence. In the modern world, the thirst for information is quenched by search engines that crawl billions of pages on the World Wide Web. This paper endeavors to make the ranking of the indexed web pages more intelligent by using techniques followed by recommendation engines that, with the help of some algorithms, recommend products on e-commerce websites. The focus primarily lies on discovering user groups, finding the degree of similarity between users based on search queries and building a graph that tracks the clicks on search results within the group, enabling the machine to learn which result might meet the expectation of one particular user and rank the results accordingly.
منابع مشابه
A New Hybrid Method for Web Pages Ranking in Search Engines
There are many algorithms for optimizing the search engine results, ranking takes place according to one or more parameters such as; Backward Links, Forward Links, Content, click through rate and etc. The quality and performance of these algorithms depend on the listed parameters. The ranking is one of the most important components of the search engine that represents the degree of the vitality...
متن کاملAn Innovative Approach for online Meta Search Engine Optimization
This paper presents an approach to identify efficient techniques used in Web Search Engine Optimization (SEO). Understanding SEO factors which can influence page’s ranking in search engine is significant for webmasters who wish to attract large number of users to their website. Different from previous relevant research, in this study we developed an intelligent Meta search engine which aggregat...
متن کاملIntelligent Agent Based Semantic Web in Cloud Computing Environment
Considering today’s web scenario, there is a need of effective and meaningful search over the web which is provided by Semantic Web. Existing search engines are keyword based. They are vulnerable in answering intelligent queries from the user due to the dependence of their results on information available in web pages. While semantic search engines provides efficient and relevant results as the...
متن کاملExamining the Impact of Search Engine Ranking and Personalization on Consumer Behavior: Combining Bayesian Modeling with Randomized Field Experiments
In this paper, we examine how different ranking and personalization mechanisms on product search engines influence consumer online search and purchase behavior. To investigate these effects, we combine archival data analysis with randomized field experiments. Our archival data analysis is based on a unique dataset containing approximately 1 million online sessions from Travelocity over a 3-mont...
متن کاملExamining the Impact of Ranking on Consumer Behavior and Search Engine Revenue
I this paper, we study the effects of three different kinds of search engine rankings on consumer behavior and search engine revenues: direct ranking effect, interaction effect between ranking and product ratings, and personalized ranking effect. We combine a hierarchical Bayesian model estimated on approximately one million online sessions from Travelocity, together with randomized experiments...
متن کامل