A role for the dynamin-like protein Vps1 during endocytosis in yeast.

نویسندگان

  • Iwona I Smaczynska-de Rooij
  • Ellen G Allwood
  • Soheil Aghamohammadzadeh
  • Ewald H Hettema
  • Martin W Goldberg
  • Kathryn R Ayscough
چکیده

Dynamins are a conserved family of proteins involved in membrane fusion and fission. Although mammalian dynamins are known to be involved in several membrane-trafficking events, the role of dynamin-1 in endocytosis is the best-characterised role of this protein family. Despite many similarities between endocytosis in yeast and mammalian cells, a comparable role for dynamins in yeast has not previously been demonstrated. The reported lack of involvement of dynamins in yeast endocytosis has raised questions over the general applicability of the current yeast model of endocytosis, and has also precluded studies using well-developed methods in yeast, to further our understanding of the mechanism of dynamin function during endocytosis. Here, we investigate the yeast dynamin-like protein Vps1 and demonstrate a transient burst of localisation to sites of endocytosis. Using live-cell imaging of endocytic reporters in strains lacking vps1, and also electron microscopy and biochemical approaches, we demonstrate a role for Vps1 in facilitating endocytic invagination. Vps1 mutants were generated, and analysis in several assays reveals a role for the C-terminal self-assembly domain in endocytosis but not in other membrane fission events with which Vps1 has previously been associated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamin-Actin Interaction Is Required for Vesicle Scission during Endocytosis in Yeast

Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifie...

متن کامل

A Charge Swap mutation E461K in the yeast dynamin Vps1 reduces endocytic invagination

Vps1 is the yeast dynamin-like protein that functions during several membrane trafficking events including traffic from Golgi to vacuole, endosomal recycling and endocytosis. Vps1 can also function in peroxisomal fission indicating that its ability to drive membrane fission is relatively promiscuous. It has been of interest therefore that several mutations have been identified in Vps1 that only...

متن کامل

Insights into dynamin-associated disorders through analysis of equivalent mutations in the yeast dynamin Vps1

The dynamins represent a superfamily of proteins that have been shown to function in a wide range of membrane fusion and fission events. An increasing number of mutations in the human classical dynamins, Dyn-1 and Dyn-2 has been reported, with diseases caused by these changes ranging from Charcot-Marie-Tooth disorder to epileptic encephalopathies. The budding yeast, Saccharomyces cerevisiae exp...

متن کامل

Phosphorylation Regulates the Endocytic Function of the Yeast Dynamin-Related Protein Vps1

The family of dynamin proteins is known to function in many eukaryotic membrane fusion and fission events. The yeast dynamin-related protein Vps1 functions at several stages of membrane trafficking, including Golgi apparatus to endosome and vacuole, peroxisomal fission, and endocytic scission. We have previously shown that in its endocytic role, Vps1 functions with the amphiphysin heterodimer R...

متن کامل

Dynamin is a member of a new GTPase family, which includes the mouse Mx protein, the yeast VPS1 and the Drosophila shibire gene product. A high homology with the shibire product suggests a role for dynamin

Dynamin is a member of a new GTPase family (Obar et al., 1990; Nakata et al., 1991) that includes mouse antiviral Mx protein, yeast VPS1 product, which is essential for vacuolar protein sorting, and Drosophila shibire gene product (van der Bliek and Meyerowitz, 1991; Chen et al., 1991). In the shibire mutant, synaptic membrane recycling is blocked because of a disorder of endocytosis in the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2010