Online Learning for Group Lasso

نویسندگان

  • Haiqin Yang
  • Zenglin Xu
  • Irwin King
  • Michael R. Lyu
چکیده

We develop a novel online learning algorithm for the group lasso in order to efficiently find the important explanatory factors in a grouped manner. Different from traditional batch-mode group lasso algorithms, which suffer from the inefficiency and poor scalability, our proposed algorithm performs in an online mode and scales well: at each iteration one can update the weight vector according to a closed-form solution based on the average of previous subgradients. Therefore, the proposed online algorithm can be very efficient and scalable. This is guaranteed by its low worst-case time complexity and memory cost both in the order of O(d), where d is the number of dimensions. Moreover, in order to achieve more sparsity in both the group level and the individual feature level, we successively extend our online system to efficiently solve a number of variants of sparse group lasso models. We also show that the online system is applicable to other group lasso models, such as the group lasso with overlap and graph lasso. Finally, we demonstrate the merits of our algorithm by experimenting with both synthetic and real-world datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of strong convexity--strong smoothness duality to learning with matrices

It is known that a function is strongly convex with respect to some norm if and only if its conjugate function is strongly smooth with respect to the dual norm. This result has already been found to be a key component in deriving and analyzing several learning algorithms. Utilizing this duality, we isolate a single inequality which seamlessly implies both generalization bounds and online regret...

متن کامل

The effect of language complexity and group size on knowledge construction: Implications for online learning

This  study  investigated  the  effect  of  language  complexity  and  group  size  on  knowledge construction in two online debates. Knowledge construction was assessed using Gunawardena et al.’s Interaction Analysis Model (1997). Language complexity was determined by dividing the  number  of  unique  words  by  total  words.  It  refers  to  the  lexical  variation.  The  results showed  that...

متن کامل

A fast unified algorithm for solving group-lasso penalize learning problems

This paper concerns a class of group-lasso learning problems where the objective function is the sum of an empirical loss and the group-lasso penalty. For a class of loss function satisfying a quadratic majorization condition, we derive a unified algorithm called groupwisemajorization-descent (GMD) for efficiently computing the solution paths of the corresponding group-lasso penalized learning ...

متن کامل

The Effect of Online Learning Tools on L2 Reading Comprehension and Vocabulary Learning

The aim of this study was to investigate the effects of various online techniques (word reference, media, and vocabulary games) on reading comprehension as well as vocabulary comprehension and production. For this purpose, 60 language learners were selected and divided into three groups, and each group was randomly assigned to one of the treatment conditions. In the first session of tre...

متن کامل

Coupled Group Lasso for Web-Scale CTR Prediction in Display Advertising

In display advertising, click through rate (CTR) prediction is the problem of estimating the probability that an advertisement (ad) is clicked when displayed to a user in a specific context. Due to its easy implementation and promising performance, logistic regression (LR) model has been widely used for CTR prediction, especially in industrial systems. However, it is not easy for LR to capture ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010