Serum influences the expression of Pseudomonas aeruginosa quorum-sensing genes and QS-controlled virulence genes during early and late stages of growth
نویسندگان
چکیده
In response to diverse environmental stimuli at different infection sites, Pseudomonas aeruginosa, a serious nosocomial pathogen, coordinates the production of different virulence factors through a complicated network of the hierarchical quorum-sensing (QS) systems including the las, rhl, and the 2-alkyl-4-quinolone-related QS systems. We recently showed that at early stages of growth serum alters the expression of numerous P. aeruginosa genes. In this study, we utilized transcriptional analysis and enzyme assays to examine the effect of serum on the QS and QS-controlled virulence factors during early and late phases of growth of the P. aeruginosa strain PAO1. At early phase, serum repressed the transcription of lasI, rhlI, and pqsA but not lasR or rhlR. However, at late phase, serum enhanced the expression of all QS genes. Serum produced a similar effect on the synthesis of the autoinducers 3OC12-HSL, C4-HSL, and HHQ/PQS. Additionally, serum repressed the expression of several QS-controlled genes in the early phase, but enhanced them in the late phase. Furthermore, serum influenced the expression of different QS-positive (vqsR, gacA, and vfr) as well as QS-negative (rpoN, qscR, mvaT, and rsmA) regulatory genes at either early or late phases of growth. However, with the exception of PAOΔvfr, we detected comparable levels of lasI/lasR expression in PAO1 and PAO1 mutants defective in these regulatory genes. At late stationary phase, serum failed to enhance lasI/lasR expression in PAOΔvfr. These results suggest that depending on the phase of growth, serum differentially influenced the expression of P. aeruginosa QS and QS-controlled virulence genes. In late phase, serum enhanced the expression of las genes through vfr.
منابع مشابه
Low concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملEffect of fetal and adult bovine serum on pyocyanin production in Pseudomonas aeruginosa isolated from clinical and soil samples
Objective(s): Pyocyanin is a blue-greenish redox-active pigment, produced by Pseudomonas aeruginosa, with a wide range of biological and biotechnological applications. Pyocyanin biosynthesis is regulated by the quorum-sensing (QS) system in which the expression of QS genes and QS-controlled virulence genes may be affected by serum as a complex medium. In the current study, effects of adult bovi...
متن کاملبررسی و شناسایی ژنهای کروم سنسینگ در سویه های سودوموناس آئروژینوزا جداشده از نمونه های بالینی انسانی به روش Multiplex PCR و تعیین مقاومت آنتی بیوتیکی
Background : Pseudomonas aeruginosa is an opportunistic pathogen and the cause of 10% to 15% of ‎nosocomial infections.Virulence genes of Pseudomonas aeruginosa is one of the most ‎aggressive mechanisms and the issue of medical opinion is important. The expression of many ‎genes is controlled and regulated in pathogenic bacteria Pseudomonas aeruginosa gene by a ‎system called Qu...
متن کاملMicroarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment.
Bacterial communication via quorum sensing (QS) has been reported to be important in the production of virulence factors, antibiotic sensitivity, and biofilm development. Two QS systems, known as the las and rhl systems, have been identified previously in the opportunistic pathogen Pseudomonas aeruginosa. High-density oligonucleotide microarrays for the P. aeruginosa PAO1 genome were used to in...
متن کاملInhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts.
Quorum sensing (QS) is a key regulator of virulence and biofilm formation in Pseudomonas aeruginosa and other medically relevant bacteria. Aqueous extracts of six plants, Conocarpus erectus, Chamaesyce hypericifolia, Callistemon viminalis, Bucida buceras, Tetrazygia bicolor, and Quercus virginiana, were examined in this study for their effects on P. aeruginosa virulence factors and the QS syste...
متن کامل