Angiogenic and vasoprotective effects of adrenomedullin on prevention of cognitive decline after chronic cerebral hypoperfusion in mice.

نویسندگان

  • Takakuni Maki
  • Masafumi Ihara
  • Youshi Fujita
  • Takuo Nambu
  • Kazutoshi Miyashita
  • Mahito Yamada
  • Kazuo Washida
  • Keiko Nishio
  • Hidefumi Ito
  • Hiroshi Harada
  • Hideki Yokoi
  • Hiroshi Arai
  • Hiroshi Itoh
  • Kazuwa Nakao
  • Ryosuke Takahashi
  • Hidekazu Tomimoto
چکیده

BACKGROUND AND PURPOSE Although subcortical vascular dementia, the major subtype of vascular dementia, is caused by a disruption in white matter integrity after cerebrovascular insufficiency, no therapy has been discovered that will restore cerebral perfusion or functional cerebral vessels. Because adrenomedullin (AM) has been shown to be angiogenic and vasoprotective, the purpose of the study was to investigate whether AM may be used as a putative treatment for subcortical vascular dementia. METHODS A model of subcortical vascular dementia was reproduced in mice by placing microcoils bilaterally on the common carotid arteries. Using mice overexpressing circulating AM, we assessed the effect of AM on cerebral perfusion, cerebral angioarchitecture, oxidative stress, white matter change, cognitive function, and brain levels of cAMP, vascular endothelial growth factor, and basic fibroblast growth factor. RESULTS After bilateral common carotid artery stenosis, mice overexpressing circulating AM showed significantly faster cerebral perfusion recovery due to substantial growth of the capillaries, the circle of Willis, and the leptomeningeal anastomoses and reduced oxidative damage in vascular endothelial cells compared with wild-type mice. Vascular changes were preceded by upregulation of cAMP, vascular endothelial growth factor, and basic fibroblast growth factor. White matter damage and working memory deficits induced by bilateral common carotid artery stenosis were subsequently restored in mice overexpressing circulating AM. CONCLUSIONS These data indicate that AM promotes arteriogenesis and angiogenesis, inhibits oxidative stress, preserves white matter integrity, and prevents cognitive decline after chronic cerebral hypoperfusion. Thus, AM may serve as a strategy to tackle subcortical vascular dementia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of berberine chloride on caspase-3 dependent apoptosis and antioxidant capacity in the hippocampus of the chronic cerebral hypoperfusion rat model

Objective(s): The main goal of the current research was to examine the effects of Berberine (BBR) on apoptotic signaling and hippocampal oxidative stress induced by common carotid artery occlusion. Materials and Methods: Chronic cerebral hypoperfusion (CCH) model was created by occluding the two common carotid arteries (two-vessel occlusion [2VO]) permanently. BBR (50 and 100 mg/kg/daily) was i...

متن کامل

Effect of Centella asiatica on pathophysiology of mild chronic cerebral hypoperfusion in rats

Centella asiatica extract on cognition and hippocampal pathology of mild chronic cerebral hypoperfusion (CCH) that was induced by permanent right common carotid artery occlusion (RCO) in rats. Materials and Methods: Sixty-four male Sprague-Dawley rats were randomly divided into four groups of Sham-veh, Sham-C. asiatica, RCO-veh and RCO-C. asiatica, which were further divided into short-term and...

متن کامل

Adrenomedullin Deficiency and Aging Exacerbate Ischemic White Matter Injury after Prolonged Cerebral Hypoperfusion in Mice

Adrenomedullin was originally isolated from pheochromocytoma cells and reduces insulin resistance by decreasing oxidative stress. White matter lesions induced by aging and hyperglycemia play a crucial role in cognitive impairment in poststroke patients. Here, we examine whether adrenomedullin deficiency and aging exacerbate ischemic white matter injury after prolonged cerebral hypoperfusion. Ad...

متن کامل

Apoptosis signal-regulating kinase 1 is a novel target molecule for cognitive impairment induced by chronic cerebral hypoperfusion.

OBJECTIVE There are currently no specific strategies for the treatment or prevention of vascular dementia. White matter lesions, a common pathology in cerebral small vessel disease, are a major cause of vascular dementia. We investigated whether apoptosis signal-regulating kinase 1 (ASK1) might be a key molecule in cerebral hypoperfusion, associated with blood-brain barrier breakdown and white ...

متن کامل

Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion.

The role of the renin-angiotensin system in cognitive impairment is unclear. This work was undertaken to test our hypothesis that renin-angiotensin system may contribute to cognitive decline and brain damage caused by chronic cerebral ischemia. C57BL/6J mice were subjected to bilateral common carotid artery stenosis with microcoil to prepare mice with chronic cerebral hypoperfusion, a model of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 42 4  شماره 

صفحات  -

تاریخ انتشار 2011