Hydrodynamic surrogate models for bio-inspired micro-swimming robots
نویسندگان
چکیده
Research on untethered micro-swimming robots is growing fast owing to their potential impact on minimally invasive medical procedures. Candidate propulsion mechanisms of robots are based on flagellar mechanisms of micro organisms such as rotating rigid helices and trav-eling plane-waves on flexible rods and parameterized by wavelength, amplitude and frequency. For design and control of swimming robots, accurate real-time models are necessary to compute trajectories, velocities and hydrodynamic forces acting on robots. Resistive force theory (RFT) provides an excellent framework for the development of real-time six degrees of freedom surrogate models for design optimization and control. However the accuracy of RFT-based models depends strongly on hydrodynamic interactions. Here, we introduce interaction coefficients that only multiply body resistance coefficients with no modification to local resistance coefficients on the tail. Interaction coefficients are obtained for a single specimen of Vibrio Algino reported in literature, and used in the RFT model for comparisons of forward velocities and body rotation rates against other specimens. Furthermore, CFD simulations are used to obtain forward and lateral velocities and body rotation rates of bio-inspired swimmers with helical tails and traveling-plane waves for a range of amplitudes and wavelengths. Interaction coefficients are obtained from the CFD simulation for the helical tail with the specified amplitude and wavelength, and used in the RFT model for comparisons of velocities and body rotation rates for other designs. Comparisons indicate that hydrodynamic models that employ interaction coefficients prove to be viable surrogates for computationally intensive three-dimensional time-dependent CFD models. Lastly, hydrodynamic models of 2 bio-inspired swimmers are used to obtain optimal amplitudes and wavelengths of flagellar mechanisms, as a demonstration of the approach.
منابع مشابه
Computationally-validated surrogate models for optimal geometric design of bio-inspired swimming robots: Helical swimmers
Keywords: Micro-swimming Micro-flows Resistive force theory Hydrodynamic interaction Bio-inspired robots Surrogate models a b s t r a c t Research on micro-swimming robots without tether is growing fast owing to their potential impact on minimally invasive medical procedures. Candidate propulsion mechanisms of robots are vastly based on microorganisms with rotating helical tails. For design of ...
متن کاملImproved Lighthill fish swimming model for bio-inspired robots: Modeling, computational aspects and experimental comparisons
The best known analytical model of swimming was originally developed by Lighthill and is known as large amplitude elongated body theory (LAEBT). Recently, this theory has been improved and adapted to robotics through a series of studies [Boyer et al., 2008, 2010; Candelier et al., 2011] ranging from hydrodynamic modelling to mobile multibody system dynamics. This article marks a further step to...
متن کاملBio-Inspired Micro Robots Swimming in Channels
Swimming micro robots that mimic micro organisms have a huge potential in biomedical applications such as opening clogged hard-to-reach arteries, targeted drug delivery and diagnostic operations. Typically, a micro swimmer that consists of a magnetic bead as its body, which is attached to a rigid helical tail, is actuated by a rotating external magnetic field and moved forward in the direction ...
متن کاملSimulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels
Swimming micro-robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming microorganisms, micro-robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro-robots, hydrodynamic characteristics of the flow field must be understood well. T...
متن کاملA hybrid dynamic model for bio-inspired robots with soft appendages - Application to a bio-inspired flexible flapping-wing micro air vehicle
The paper deals with the dynamic modeling of bio-inspired robots with soft appendages as flying insect-like or swimming fish-like robots. In order to model such soft systems, we here propose to exploit the Mobile Multibody System framework introduced in [1], [2], [3]. In such a framework, the robot is considered as a tree-like structure of rigid bodies whose the joint evolution is governed by s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1311.3429 شماره
صفحات -
تاریخ انتشار 2013