Unsupervised fuzzy clustering using weighted incremental neural networks

نویسنده

  • Hamed Hamid Muhammed
چکیده

A new more efficient variant of a recently developed algorithm for unsupervised fuzzy clustering is introduced. A Weighted Incremental Neural Network (WINN) is introduced and used for this purpose. The new approach is called FC-WINN (Fuzzy Clustering using WINN). The WINN algorithm produces a net of nodes connected by edges, which reflects and preserves the topology of the input data set. Additional weights, which are proportional to the local densities in input space, are associated with the resulting nodes and edges to store useful information about the topological relations in the given input data set. A fuzziness factor, proportional to the connectedness of the net, is introduced in the system. A watershed-like procedure is used to cluster the resulting net. The number of the resulting clusters is determined by this procedure. Only two parameters must be chosen by the user for the FC-WINN algorithm to determine the resolution and the connectedness of the net. Other parameters that must be specified are those which are necessary for the used incremental neural network, which is a modified version of the Growing Neural Gas algorithm (GNG). The FC-WINN algorithm is computationally efficient when compared to other approaches for clustering large high-dimensional data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Unsupervised Image Segmentation Using New Neuro-Fuzzy Systems

New Neuro-Fuzzy Systems, using algorithms for unsupervised fuzzy clustering based on so-called Weighted Neural Networks, are introduced and used for Unsupervised Image Segmentation. New incremental and fixed (or grid-partitioned) Weighted Neural Networks (WNN) are introduced and used for this purpose. The WNN algorithm (incremental or grid-partitioned) produces a net, of nodes connected by edge...

متن کامل

DUNEDIN NEW ZEALAND Dynamic Evolving Fuzzy Neural Networks with Ôm-out-of-nÕ Activation Nodes for On-line Adaptive Systems

The paper introduces a new type of evolving fuzzy neural networks (EFuNNs), denoted as mEFuNNs, for on-line learning and their applications for dynamic time series analysis and prediction. mEFuNNs evolve through incremental, hybrid (supervised/unsupervised), on-line learning, like the EFuNNs. They can accommodate new input data, including new features, new classes, etc. through local element tu...

متن کامل

Image Segmentation Using a RBF Approach of Neural Network

Radial Basis function Neural Networks forms a class of neural networks which is much more advantageous then other methods of neural networks such as faster learning, easy networks & structures & better approximations & classifications. The system consist of a multilayer perceptron (MLP)-like network that performs image segmentation by RBF technique of the input image using labels automatically ...

متن کامل

Review on Classification and Clustering using Fuzzy Neural Networks

In data mining two important tasks involved are classification and clustering. In general, in classification the classifier assigns a class label from a set of predefined classes to a new input object. Whereas, given a set of objects, clustering creates different groups of these objects using some similarity measure. In the context of machine learning, classification is supervised learning and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of neural systems

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2004