A neuroregenerative human ensheathing glia cell line with conditional rapid growth.
نویسندگان
چکیده
Ensheathing glia have been demonstrated to have neuroregenerative properties but this cell type from human sources has not been extensively studied because tissue samples are not easily obtained, primary cultures are slow growing, and human cell lines are not available. We previously isolated immortalized ensheathing glia by gene transfer of BMI1 and telomerase catalytic subunit into primary cultures derived from olfactory bulbs of an elderly human cadaver donor. These cells escape the replicative senescence characteristic of primary human cells while conserving antigenic and neuroregenerative properties of ensheathing glia, but their low proliferative rate in culture complicates their utility as cell models and their application for preclinical cell therapy experiments. In this study we describe the use of a conditional SV40 T antigen (TAg) transgene to generate human ensheathing glia cell lines, which are easy to maintain due to their robust growth in culture. Although these fast growing clones exhibited polyploid karyotypes frequently observed in cells immortalized by TAg, they did not acquire a transformed phenotype, all of them maintaining neuroregenerative capacity and antigenic markers typical of ensheathing glia. These markers were also retained even after elimination of the TAg transgene using Cre/LoxP technology, although the cells died shortly after, confirming that their survival depended on the presence of the immortalizing genes. We have also demonstrated here the feasibility of using these human cell lines in animal models by genetically marking the cells with GFP and implanting them into the injured spinal cord of immunosuppressed rats. Our conditionally immortalized human ensheathing glia cell lines will thus serve as useful tools for advancing cell therapy approaches and understanding neuroregenerative mechanisms of this unique cell type.
منابع مشابه
Fibroblast growth factor signaling instructs ensheathing glia wrapping of Drosophila olfactory glomeruli
The formation of complex but highly organized neural circuits requires interactions between neurons and glia. During the assembly of the Drosophila olfactory circuit, 50 olfactory receptor neuron (ORN) classes and 50 projection neuron (PN) classes form synaptic connections in 50 glomerular compartments in the antennal lobe, each of which represents a discrete olfactory information-processing ch...
متن کاملCultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors.
In the primary olfactory pathway axons of olfactory neurons (ONs) are accompanied by ensheathing cells (ECs) as the fibres course towards the olfactory bulb. Ensheathing cells are thought to play an important role in promoting and guiding olfactory axons to their appropriate target. In recent years, studies have shown that transplants of ECs into lesions in the central nervous system (CNS) are ...
متن کاملEnsheathing glia function as phagocytes in the adult Drosophila brain.
The mammalian brain contains many subtypes of glia that vary in their morphologies, gene expression profiles, and functional roles; however, the functional diversity of glia in the adult Drosophila brain remains poorly defined. Here we define the diversity of glial subtypes that exist in the adult Drosophila brain, show they bear striking similarity to mammalian brain glia, and identify the maj...
متن کاملTransplantation strategies to promote repair of the injured spinal cord.
This review describes the results of the transplantation of Schwann cells and olfactory ensheathing glia in combination with other interventions. The complete transection injury model was used to test the combination of Schwann cell bridges with methylprednisolone, neurotrophins, or olfactory ensheathing glia. The contusion injury model was used to compare Schwann cell and olfactory ensheathing...
متن کاملComparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing glia.
Olfactory ensheathing glia (OEG) are a specialized type of glia that support the growth of primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. Transplantation of OEG in the injured spinal cord promotes sprouting of injured axons and results in reduced cavity formation, enhanced axonal and tissue sparing, remyelination, and angiogenesis. Gene expression analysis ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell transplantation
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2011