Tree-Independent Dual-Tree Algorithms
نویسندگان
چکیده
Dual-tree algorithms are a widely used class of branch-and-bound algorithms. Unfortunately, developing dual-tree algorithms for use with different trees and problems is often complex and burdensome. We introduce a four-part logical split: the tree, the traversal, the point-to-point base case, and the pruning rule. We provide a meta-algorithm which allows development of dual-tree algorithms in a tree-independent manner and easy extension to entirely new types of trees. Representations are provided for five common algorithms; for k-nearest neighbor search, this leads to a novel, tighter pruning bound. The meta-algorithm also allows straightforward extensions to massively parallel settings.
منابع مشابه
Plug-and-play dual-tree algorithm runtime analysis
Numerous machine learning algorithms contain pairwise statistical problems at their core— that is, tasks that require computations over all pairs of input points if implemented naively. Often, tree structures are used to solve these problems efficiently. Dual-tree algorithms can efficiently solve or approximate many of these problems. Using cover trees, rigorous worstcase runtime guarantees hav...
متن کاملشناسایی حالت چهره با استفاده از نرمالیزاسیون هندسی و تبدیل موجک مختلط Dual-Tree
چکیده: در سالهای اخیر شناسایی حالت چهره به دلیل کاربردهای فراوان موردتوجه زیادی در تحقیقات بینایی ماشین قرار گرفته است. به دلیل تنوع و تغییرپذیری حالتها، شناسایی حالت چهره با دقت بالا هنوز هم بهعنوان یک مسئله چالشبرانگیز مطرح است. در این مقاله روش نوینی ارائه میشود که همزمان با حذف تنوع هندسی در چهره، از استخراج ویژگیهای دقیق بهره میبرد. برای این کار از مدل هندسی میانگین برای نرمالیزاسی...
متن کاملForest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data
Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...
متن کاملCompact Suffix Trees Resemble PATRICIA Tries: Limiting Distribution of the Depth
Suffix trees are the most frequently used data structures in algorithms on words. In this paper, we consider the depth of a compact suffix tree, also known as the PAT tree, under some simple probabilistic assumptions. For a biased memoryless source, we prove that the limiting distribution for the depth in a PAT tree is the same as the limiting distribution for the depth in a PATRICIA trie, even...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کامل