Approximation and Comparison for Motion by Mean Curvature with Intersection Points
نویسنده
چکیده
Abstract-Consider the motion of a curve in the plane under its mean curvature. It is a very interesting problem to investigate what happens when there are intersection points on the curve at which the mean curvature is singular. In this paper, we study this issue numerically by solving the Allen-Cahn equation and the nonlocal evolution equation with Kac potential. The Allen-Cahn equation is discretized by a monotone scheme, and the nonlocal evolution equation with Kac potential is discretized by the spectral method. Several curves with intersection points under motion by mean curvature are studied. From a simple analysis and our numerical results, we find that which direction to split of the curve at the intersection point depends on the angle of the curve at the point, i.e., it splits in horizontal direction when the angle o/ > 7r/2, in vertical direction when LY < 7r/2, and in either direction when 01 = n/2. @ 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
A Level Set Crystalline Mean Curvature Flow of Surfaces
We introduce a new notion of viscosity solutions for the level set formulation of the motion by crystalline mean curvature in three dimensions. The solutions satisfy the comparison principle, stability with respect to an approximation by regularized problems, and we also show the uniqueness and existence of a level set flow for bounded crystals.
متن کاملApproximation of Smooth Convex Bodies by Random Circumscribed Polytopes
Choose n independent random points on the boundary of a convex body K ⊂Rd . The intersection of the supporting halfspaces at these random points is a random convex polyhedron. The expectations of its volume, its surface area and its mean width are investigated. In the case that the boundary of K is sufficiently smooth, asymptotic expansions as n→∞ are derived even in the case when the curvature...
متن کاملA Phase Field Based Pde Constrained Optimization Approach to Time Discrete Willmore Flow
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Nested Minimization Approach of Willmore Type Functionals Based on Phase Fields
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کاملA Phase Field based PDE Constraint Optimization Approach to Time Discrete Willmore Flow
A novel phase field model for Willmore flow is proposed based on a nested variational time discretization. Thereby, the mean curvature in the Willmore functional is replaced by an approximate speed of mean curvature motion, which is computed via a fully implicit variational model for time discrete mean curvature motion. The time discretization of Willmore flow is then performed in a nested fash...
متن کامل