Factored Semi-Tied Covariance Matrices
نویسنده
چکیده
A new form of covariance modelling for Gaussian mixture models and hidden Markov models is presented. This is an extension to an efficient form of covariance modelling used in speech recognition, semi-tied covariance matrices. In the standard form of semi-tied covariance matrices the covariance matrix is decomposed into a highly shared decorrelating transform and a component-specific diagonal covariance matrix. The use of a factored decorrelating transform is presented in this paper. This factoring effectively increases the number of possible transforms without increasing the number of free parameters. Maximum likelihood estimation schemes for all the model parameters are presented including the component/transform assignment, transform and component parameters. This new model form is evaluated on a large vocabulary speech recognition task. It is shown that using this factored form of covariance modelling reduces the word error rate.
منابع مشابه
Adapting Semi-tied Full-covariance Matrix Hmms
There is normally a simple choice made in the form of the covariance matrix to be used with HMMs. Either a diagonal covariance matrix is used, with the underlying assumption that elements of the feature vector are independent, or a full or block-diagonal matrix is used, where all or some of the correlations are explicitly modelled. Unfortunately when using full or block-diagonal covariance matr...
متن کاملFactored sparse inverse covariance matrices
Most HMM-based speech recognition systems use Gaussian mixtures as observation probability density functions. An important goal in all such systems is to improve parsimony. One method is to adjust the type of covariance matrices used. In this work, factored sparse inverse covariance matrices are introduced. Based on U DU factorization, the inverse covariance matrix can be represented using line...
متن کاملSemi-tied covariance matrices
A standard problem in many classification tasks is how to model feature vectors whose elements are highly correlated. If multi-variate Gaussian distributions are used to model the data then they must have full covariance matrices to accurately do so. This requires a large number of parameters per distribution which restricts the number of distributions that may be robustly estimated, particular...
متن کاملMaximum mutual information speaker adapted training with semi-tied covariance matrices
We present re-estimation formulae for semi-tied covariance (STC) transformation matrices based on a maximum mutual information (MMI) criterion. These re-estimation formulae are different from those that have appeared previously in the literature. Moreover, we present a positive definiteness criterion with which the regularization constant present in all MMI re-estimation formulae can be reliabl...
متن کاملSemi-tied Full-covariance Matrices for Hidden Markov Models
There is normally a simple choice made in the form of the covariance matrix to be used with HMMs. Either a diagonal covariance matrix is used, with the underlying assumption that elements of the feature vector are independent, or a full or block-diagonal matrix is used, where all or some of the correlations are explicitly modelled. Unfortunately when using full or block-diagonal covariance matr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000